On Fredholm solvability and on the index of the generalized Neumann problem for an elliptic equation

被引:4
作者
Koshanov, B. [1 ,2 ]
Soldatov, A. [3 ,4 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Abai Kazakh Natl Pedag Univ Almaty, Alma Ata, Kazakhstan
[3] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia
[4] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
关键词
Higher order elliptic equations; generalized Neumann problem; Fredholm solvability; complementarity condition; formula for the index; PARTIAL-DIFFERENTIAL EQUATIONS; GREEN-FUNCTION REPRESENTATION; BOUNDARY-VALUE PROBLEM; DIRICHLET PROBLEM;
D O I
10.1080/17476933.2021.1958797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Fredholm solvability of the generalized Neumann problem for a high-order elliptic equation in the plane. The equivalence of the solvability conditions of the generalized Neumann problem to the complementarity condition (Shapiro-Lopatinsky condition) is proved. The formula for the index of the specified problem in the class C-2l,C-mu (D) over bar is calculated.
引用
收藏
页码:2907 / 2923
页数:17
相关论文
共 24 条
[1]  
Abapolova EA., 2010, Scientific Bulletin of the Belarusian State University. Ser. Mathematics. Physics, V5(76), P6
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   Modified harmonic Robin function [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (04) :483-496
[4]  
Begehr H., 2006, Proceedings of the Steklov Institute of Math., V255, P13
[5]   A Dirichlet problem for polyharmonic functions [J].
Begehr, Heinrich ;
Du, Jinyuan ;
Wang, Yufeng .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) :435-457
[6]  
Bitsadze, 1988, DIFF URAVN, V24, P825
[7]  
Dezin A.A., 1954, Dokl. Akad. Nauk SSSR (N.S.), V96, P901
[9]  
Gilbert R.P., 1969, Function Theoretic Methods in Partial Dierential Equations
[10]   Green function representation in the Dirichlet problem for polyharmonic equations in a ball [J].
Kal'menov, T. Sh. ;
Koshanov, B. D. ;
Nemchenko, M. Yu. .
DOKLADY MATHEMATICS, 2008, 78 (01) :528-530