Editorial: Nuclear Power Plant Equipment Prognostics and Health Management Based on Data-Driven Methods

被引:0
作者
Wang, Jun [1 ]
Zhong, Xianping [2 ]
Zhao, Xingang [3 ]
Yurko, Joseph P. [2 ]
Revankar, Shripad T. [4 ]
机构
[1] Univ Wisconsin Madison, Madison, WI USA
[2] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[3] Oak Ridge Natl Lab, DOE, Oak Ridge, TN USA
[4] Purdue Univ, W Lafayette, IN 47907 USA
关键词
advanced sensor; fault diagnosis; data-driven approach; condition monitoring; prognostics;
D O I
10.3389/fenrg.2021.719245
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
引用
收藏
页数:2
相关论文
共 4 条
[1]  
Al Rashdan A.Y., 2018, AUTOMATION DATA COLL, DOI [10.2172/1475451, DOI 10.2172/1475451]
[2]   Standardized exchange of plant equipment and materials data based on ISO 15926 methodology in nuclear power plants [J].
Kwon, Soonjo ;
Kim, Bongcheol ;
An, Kyungik ;
Ryu, Dongsoo ;
Mun, Duhwan ;
Han, Soonhung .
ANNALS OF NUCLEAR ENERGY, 2018, 118 :185-198
[3]  
Liu BY, 2019, INT C ELECTR MACH SY, P224, DOI 10.1109/icems.2019.8921965
[4]  
Patel H. R., 2018, PDPU Journal of Energy and Management, V2, P31