On well-posedness of two-component Camassa-Holm system in the critical Besov space

被引:6
作者
Chen, Defu [1 ]
Li, Yongsheng [1 ]
Yan, Wei [2 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Two-component Camassa-Holm system; Cauchy problem; Critical Besov space; Well-posedness; SHALLOW-WATER EQUATION; GLOBAL WEAK SOLUTIONS; CAUCHY-PROBLEM; WAVE-BREAKING; EXISTENCE;
D O I
10.1016/j.na.2015.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem for a two-component Camassa-Holm system in the critical Besov space B-2,1(1/2). We obtain the solution local existence and prove the solution mapping is Holder continuous with respect to the initial value. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 1998, Perfect Incompressible Fluids
[2]  
Bahouri H., 2011, GRUNDLEHREN MATHEMAT, V343
[3]   Acoustic scattering and the extended Korteweg-de Vries hierarchy [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :190-206
[4]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]  
Camassa R., 1994, Advances in Applied Mechanics, V31, P1
[7]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[8]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[9]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[10]  
2-5