Polymer adsorption - Driven self-assembly of nanostructures

被引:71
|
作者
Chakraborty, AK [1 ]
Golumbfskie, AJ
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
polymer adsorption; frustrated systems; disorder; nanostructures;
D O I
10.1146/annurev.physchem.52.1.537
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.
引用
收藏
页码:537 / 573
页数:41
相关论文
共 50 条
  • [21] Self-assembly of Clathrin protein nanostructures
    Arunagirinathan, Manickam Adhimoolam
    Gibbons, Brian J.
    Schoen, Alia P.
    Huggins, Kelly N. L.
    Heilshorn, Sarah C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [22] Combinatorial self-assembly of DNA nanostructures
    Lund, Kyle
    Liu, Yan
    Yan, Hao
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2006, 4 (18) : 3402 - 3403
  • [23] Self-assembly concepts for multicompartment nanostructures
    Groschel, Andre H.
    Mueller, Axel H. E.
    NANOSCALE, 2015, 7 (28) : 11841 - 11876
  • [24] Epitaxial self-assembly of multiferroic nanostructures
    Tan, Zhuopeng
    Slutsker, Julia
    Roytburd, Alexander L.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
  • [25] Self-assembly of rigid polymers into nanostructures
    Jimaja, Setuhn
    Taton, Daniel
    OReilly, Rachel
    Dove, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] Modeling of Self-Assembly of Water Nanostructures
    Kirov, M. V.
    PHYSICS OF WAVE PHENOMENA, 2024, 32 (03) : 190 - 195
  • [27] Hierarchical self-assembly into chiral nanostructures
    Sang, Yutao
    Liu, Minghua
    CHEMICAL SCIENCE, 2022, 13 (03) : 633 - 656
  • [28] Self-assembly of DNA nanostructures.
    Mao, CD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1154 - U1154
  • [29] Enzymatic Self-Assembly of Nanostructures for Theranostics
    Chen, Yue
    Liang, Gaolin
    THERANOSTICS, 2012, 2 (02): : 139 - 147
  • [30] Oxide nanostructures through self-assembly
    Aggarwal, S
    Ogale, SB
    Ganpule, CS
    Shinde, SR
    Novikov, VA
    Monga, AP
    Burr, MR
    Ramesh, R
    Ballarotto, V
    Williams, ED
    APPLIED PHYSICS LETTERS, 2001, 78 (10) : 1442 - 1444