Product and Markov measures of type III

被引:6
作者
Dooley, AH [1 ]
Klemes, I
Quas, AN
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1998年 / 65卷
关键词
AT property; G-measures; orbit equivalence; non-singular transformations;
D O I
10.1017/S1446788700039410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We five some explicit constructions of type III product measures with Various properties, resolving some conjectures of Brown, Dooley and Lake. We also define a family of Markov odometers of type III0 and show that the associated flow is approximately transitive.
引用
收藏
页码:84 / 110
页数:27
相关论文
共 18 条
[1]   ODOMETER ACTIONS ON G-MEASURES [J].
BROWN, G ;
DOOLEY, AH .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :279-307
[2]   ERGODIC MEASURES ARE OF WEAK PRODUCT TYPE [J].
BROWN, G ;
DOOLEY, AH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (JUL) :129-145
[3]   ON THE KRIEGER-ARAKI-WOODS RATIO SET [J].
BROWN, G ;
DOOLEY, AH ;
LAKE, J .
TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (01) :1-13
[4]   ABELIAN COCYCLES FOR NONSINGULAR ERGODIC TRANSFORMATIONS AND THE GENERICITY OF TYPE-III1 TRANSFORMATIONS [J].
CHOKSI, JR ;
HAWKINS, JM ;
PRASAD, VS .
MONATSHEFTE FUR MATHEMATIK, 1987, 103 (03) :187-205
[5]  
Chung KL., 1974, COURSE PROBABILITY T
[6]  
Connes A., 1985, ERGOD THEOR DYN SYST, V5, P203
[7]  
DOOLEY AH, IN PRESS T AM MATH S
[8]  
DYE H, 1963, AM J MATH, V95, P551
[9]   A MEASURE THEORETICAL PROOF OF THE CONNES-WOODS THEOREM ON AT-FLOWS [J].
HAMACHI, T .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 154 (01) :67-85
[10]  
HAMACHI T, 1974, MEM FAC SCI KYUSHU A, V28, P115