Cholesky-Based Reduced-Rank Square-Root Ensemble Kalman Filtering

被引:0
作者
Zhou, Yucheng [1 ]
Xu, Jiahe [1 ]
Jing, Yuanwei [2 ]
Dimirovski, Georgi M. [3 ,4 ]
机构
[1] Chinese Acad Forestry, Inst Wood Ind, Dept Res, Fac Engn, Beijing 100091, Peoples R China
[2] Northeastern Univ, Fac Informat Sci & Engn, Shenyang AH-110004, Liaoning, Peoples R China
[3] Saints Cyril & Methodius Univ Skopje, Fac FEIT, MK-1000 Skopje, North Macedonia
[4] Dogus Univ, Fac Engn, TR-34722 Istanbul, Turkey
来源
2010 AMERICAN CONTROL CONFERENCE | 2010年
关键词
MODEL; ASSIMILATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The reduced-order ensemble Kalman filter (EnKF) is introduced to the problem of state estimation for nonlinear large-scale systems. The filter reduction based on both the singular value decomposition (SVD) and the Cholesky decomposition provide for reduced-order square-root EnKF. To solve the filter reduction, the EnKF algorithm is modified to obtain members of measurement ensemble from uncorrelated sensors in the system but not a Monte Carlo method, and the performances of the reduced-order EnKF under different conditions are investigated. Simulation shows that the Cholesky-factorization-based reduced-order EnKF is superior to the SVD-based and offer much advantage in terms of estimation performance.
引用
收藏
页码:6870 / 6875
页数:6
相关论文
共 25 条
[1]  
Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
[2]  
2
[3]  
Ballabrera-Poy J, 2001, J CLIMATE, V14, P1720, DOI 10.1175/1520-0442(2001)014<1720:AOAROK>2.0.CO
[4]  
2
[5]   THE OPTIMAL PROJECTION EQUATIONS FOR REDUCED-ORDER STATE ESTIMATION [J].
BERNSTEIN, DS ;
HYLAND, DC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (06) :583-585
[6]   COMPARTMENTAL MODELING AND 2ND-MOMENT ANALYSIS OF STATE-SPACE SYSTEMS [J].
BERNSTEIN, DS ;
HYLAND, DC .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (03) :880-901
[7]  
Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
[8]  
2
[9]   Cholesky-based reduced-rank square-root Kalman filtering [J].
Chandrasekar, J. ;
Kim, I. S. ;
Bernstein, D. S. ;
Ridley, A. J. .
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, :3987-+
[10]  
Daum F, 2003, AEROSP CONF PROC, P1979