A high-order scheme for time-space fractional diffusion equations with Caputo-Riesz derivatives

被引:6
作者
Sayyar, Golsa [1 ]
Hosseini, Seyed Mohammad [1 ]
Mostajeran, Farinaz [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Appl Math, POB 14115-175, Tehran, Iran
关键词
Caputo derivative; Fractional diffusion equation; Riesz derivative; Fractional kinetic equation; Weighted and shifted Grunwald difference method; BOUNDARY-VALUE-PROBLEMS; FINITE-ELEMENT-METHOD; DIFFERENCE-METHODS; SPECTRAL METHOD;
D O I
10.1016/j.camwa.2021.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a high-order approach for solving one- and two-dimensional time-space fractional diffusion equations (FDEs) with Caputo-Riesz derivatives. To design the scheme, the Caputo temporal derivative is approximated using a high-order method, and the spatial Riesz derivative is discretized by the second-order weighted and shifted Grunwald difference (WSGD) method. It is proved that the scheme is unconditionally stable and convergent with the order of O (tau(alpha)h(2) + tau(4) ), where tau and h are time and space step sizes, respectively. We illustrate the accuracy and effectiveness of the method by providing several numerical examples.
引用
收藏
页码:34 / 43
页数:10
相关论文
共 50 条
[31]   A robust scheme for Caputo variable-order time-fractional diffusion-type equations [J].
Sadri, Khadijeh ;
Hosseini, Kamyar ;
Baleanu, Dumitru ;
Salahshour, Soheil ;
Hincal, Evren .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) :5747-5764
[32]   A unified difference-spectral method for time-space fractional diffusion equations [J].
Huang, Jianfei ;
Yang, Dandan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) :1172-1184
[33]   A robust scheme for Caputo variable-order time-fractional diffusion-type equations [J].
Khadijeh Sadri ;
Kamyar Hosseini ;
Dumitru Baleanu ;
Soheil Salahshour ;
Evren Hinçal .
Journal of Thermal Analysis and Calorimetry, 2023, 148 :5747-5764
[34]   A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation [J].
Ding, Hengfei .
APPLIED NUMERICAL MATHEMATICS, 2019, 135 :30-46
[35]   Fourth order finite difference schemes for time-space fractional sub-diffusion equations [J].
Pang, Hong-Kui ;
Sun, Hai-Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (06) :1287-1302
[36]   A Galerkin finite element scheme for time-space fractional diffusion equation [J].
Zhao, Zhengang ;
Zheng, Yunying ;
Guo, Peng .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) :1212-1225
[37]   A fast finite difference scheme for the time-space fractional diffusion equation [J].
Wang, Y. ;
Cai, M. .
IFAC PAPERSONLINE, 2024, 58 (12) :174-178
[38]   A Compact Difference Scheme for Time-Space Fractional Nonlinear Diffusion-Wave Equations with Initial Singularity [J].
Elmahdi, Emadidin Gahalla Mohmed ;
Arshad, Sadia ;
Huang, Jianfei .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023,
[39]   An Adaptive Finite Element Scheme for Solving Space-time Riesz-Caputo Fractional Partial Differential Equations. [J].
Adel, E. ;
El-Kalla, I. L. ;
Elsaid, A. ;
Sameeh, M. .
IRANIAN JOURNAL OF SCIENCE, 2025, 49 (04) :1061-1073
[40]   FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Chen, Minghua ;
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1418-1438