A high-order scheme for time-space fractional diffusion equations with Caputo-Riesz derivatives

被引:6
|
作者
Sayyar, Golsa [1 ]
Hosseini, Seyed Mohammad [1 ]
Mostajeran, Farinaz [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Appl Math, POB 14115-175, Tehran, Iran
关键词
Caputo derivative; Fractional diffusion equation; Riesz derivative; Fractional kinetic equation; Weighted and shifted Grunwald difference method; BOUNDARY-VALUE-PROBLEMS; FINITE-ELEMENT-METHOD; DIFFERENCE-METHODS; SPECTRAL METHOD;
D O I
10.1016/j.camwa.2021.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a high-order approach for solving one- and two-dimensional time-space fractional diffusion equations (FDEs) with Caputo-Riesz derivatives. To design the scheme, the Caputo temporal derivative is approximated using a high-order method, and the spatial Riesz derivative is discretized by the second-order weighted and shifted Grunwald difference (WSGD) method. It is proved that the scheme is unconditionally stable and convergent with the order of O (tau(alpha)h(2) + tau(4) ), where tau and h are time and space step sizes, respectively. We illustrate the accuracy and effectiveness of the method by providing several numerical examples.
引用
收藏
页码:34 / 43
页数:10
相关论文
共 50 条
  • [1] Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative
    Arshad, Sadia
    Huang, Jianfei
    Khaliq, Abdul Q. M.
    Tang, Yifa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 1 - 15
  • [2] Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain
    Jiang, H.
    Liu, F.
    Turner, I.
    Burrage, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1117 - 1127
  • [3] An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay
    Omran, A. K.
    Zaky, M. A.
    Hendy, A. S.
    Pimenov, V. G.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [4] A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (04) : 764 - 781
  • [5] Numerical simulation of fractional-order reaction–diffusion equations with the Riesz and Caputo derivatives
    Kolade M. Owolabi
    Neural Computing and Applications, 2020, 32 : 4093 - 4104
  • [6] Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Al Qurashi, Maysaa Mohamed
    Tang, Yifa
    Zhao, Yue
    ENTROPY, 2018, 20 (05)
  • [7] Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives
    Owolabi, Kolade M.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08) : 4093 - 4104
  • [8] Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation
    Yuxin Zhang
    Hengfei Ding
    Communications on Applied Mathematics and Computation, 2020, 2 : 57 - 72
  • [9] Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation
    Zhang, Yuxin
    Ding, Hengfei
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (01) : 57 - 72
  • [10] Finite difference method for time-space linear and nonlinear fractional diffusion equations
    Arshad, Sadia
    Bu, Weiping
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 202 - 217