Sn-Doped Bi2O3 nanosheets for highly efficient electrochemical CO2 reduction toward formate production

被引:34
|
作者
Li, Xiao [1 ,2 ]
Wu, Xingqiao [1 ,2 ]
Li, Junjie [1 ,2 ]
Huang, Jingbo [1 ,2 ]
Ji, Liang [1 ,2 ]
Leng, Zihan [1 ,2 ]
Qian, Ningkang [1 ,2 ]
Yang, Deren [1 ,2 ]
Zhang, Hui [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hangzhou Innovat Ctr, Inst Adv Semicond, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; METAL-ELECTRODES; FORMIC-ACID; ELECTROREDUCTION; NANOPARTICLES; HYDROGENATION; SELECTIVITY; CATALYSTS; METHANOL; OXIDE;
D O I
10.1039/d1nr06038d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic CO2 reduction to formate is considered as a perfect route for efficient conversion of the greenhouse gas CO2 to value-added chemicals. However, it still remains a huge challenge to design a catalyst with both high catalytic activity and selectivity for target products. Here we report a unique Sn-doped Bi2O3 nanosheet (NS) electrocatalyst with different atomic percentages of Sn (1.2, 2.5, and 3.8%) prepared by a simple solvothermal method for highly efficient electrochemical reduction of CO2 to formate. Of them, the 2.5% Sn-doped Bi2O3 NSs exhibited the highest faradaic efficiency (FE) of 93.4% with a current density of 24.3 mA cm(-2) for formate at -0.97 V in the H-cell and a maximum current density of nearly 50 mA cm(-2) was achieved at -1.27 V. The formate FE is stable maintained at over 90% in a wide potential range from -0.87 V to -1.17 V. Electrochemical and density functional theory (DFT) analyses of undoped and Sn doped Bi2O3 NSs indicated that the strong synergistic effect between Sn and Bi is responsible for the enhancement in the adsorption capacity of the OCHO* intermediate, and thus the activity for formate production. In addition, we coupled 2.5% Sn-doped Bi2O3 NSs with a dimensionally stable anode (DSA) to realize battery-driven highly active CO2RR and OER with decent activity and efficiency.
引用
收藏
页码:19610 / 19616
页数:7
相关论文
共 50 条
  • [41] Active plane modulation of Bi2O3 nanosheets via Zn substitution for efficient electrocatalytic CO2 reduction to formic acid
    Yumei Liu
    Tiantian Wu
    Hongfei Cheng
    Jiawen Wu
    Xiaodong Guo
    Hong Jin Fan
    Nano Research, 2023, 16 : 10803 - 10809
  • [42] Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets
    Wu, Dan
    Huo, Ge
    Chen, WenYue
    Fu, Xian-Zhu
    Luo, Jing-Li
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 271
  • [43] F-doped In(OH)3 for electrochemical reduction of CO2 to formate
    An, Xiaowei
    Li, Shasha
    Yang, Ziyuan
    Ma, Xuli
    Hao, Xiaogang
    Abudula, Abuliti
    Guan, Guoqing
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [44] Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst
    Aarthi Pandiarajan
    Ramachandran Sekar
    Kumaravelu Pavithra
    Murugesan Gomathi
    Sakkarapalayam Murugesan Senthil Kumar
    Manickam Anbu Kulandainathan
    Subbiah Ravichandran
    Journal of Applied Electrochemistry, 2023, 53 : 1033 - 1042
  • [45] Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate
    Chen, Chengzhen
    Pang, Yuanjie
    Zhang, Fanghua
    Zhong, Juhua
    Zhang, Bo
    Cheng, Zhenmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) : 19621 - 19630
  • [46] Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst
    Pandiarajan, Aarthi
    Sekar, Ramachandran
    Pavithra, Kumaravelu
    Gomathi, Murugesan
    Kumar, Sakkarapalayam Murugesan Senthil
    Kulandainathan, Manickam Anbu
    Ravichandran, Subbiah
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1033 - 1042
  • [47] Continuous Production of Formic Acid Solution from Electrocatalytic CO2 Reduction Using Mesoporous Bi2O3 Nanosheets as Catalyst
    Tan, Zhonghao
    Zhang, Jianling
    Yang, Yisen
    Zhong, Jiajun
    Zhao, Yingzhe
    Hu, Jingyang
    Wang, Yanyue
    Su, Zhuizhui
    CCS CHEMISTRY, 2024, 6 (01): : 100 - 109
  • [48] Ce Promotion of In2O3 for Electrochemical Reduction of CO2 to Formate
    Wissink, Tim
    Rollier, Floriane A.
    Muravev, Valery
    Heinrichs, Jason M. J. J.
    van de Poll, Rim C. J.
    Zhu, Jiadong
    Anastasiadou, Dimitra
    Kosinov, Nikolay
    Figueiredo, Marta C.
    Hensen, Emiel J. M.
    ACS CATALYSIS, 2024, 14 (22): : 16589 - 16604
  • [49] Designing Bi-In2O3 Nanoflower Catalysts for Enhanced Performance of Electrochemical CO2 Reduction to Formate
    Wang, Ruichen
    Deng, Siting
    Pang, Yongyu
    Chai, Guoliang
    CHEMNANOMAT, 2024, 10 (07):
  • [50] Novel Bi-Doped Amorphous SnOx Nanoshells for Efficient Electrochemical CO2 Reduction into Formate at Low Overpotentials
    Yang, Qi
    Wu, Qilong
    Liu, Yang
    Luo, Shuiping
    Wu, Xiaotong
    Zhao, Xixia
    Zou, Haiyuan
    Long, Baihua
    Chen, Wen
    Liao, Yujia
    Li, Lanxi
    Shen, Pei Kang
    Duan, Lele
    Quan, Zewei
    ADVANCED MATERIALS, 2020, 32 (36)