Sn-Doped Bi2O3 nanosheets for highly efficient electrochemical CO2 reduction toward formate production

被引:34
|
作者
Li, Xiao [1 ,2 ]
Wu, Xingqiao [1 ,2 ]
Li, Junjie [1 ,2 ]
Huang, Jingbo [1 ,2 ]
Ji, Liang [1 ,2 ]
Leng, Zihan [1 ,2 ]
Qian, Ningkang [1 ,2 ]
Yang, Deren [1 ,2 ]
Zhang, Hui [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hangzhou Innovat Ctr, Inst Adv Semicond, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; METAL-ELECTRODES; FORMIC-ACID; ELECTROREDUCTION; NANOPARTICLES; HYDROGENATION; SELECTIVITY; CATALYSTS; METHANOL; OXIDE;
D O I
10.1039/d1nr06038d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic CO2 reduction to formate is considered as a perfect route for efficient conversion of the greenhouse gas CO2 to value-added chemicals. However, it still remains a huge challenge to design a catalyst with both high catalytic activity and selectivity for target products. Here we report a unique Sn-doped Bi2O3 nanosheet (NS) electrocatalyst with different atomic percentages of Sn (1.2, 2.5, and 3.8%) prepared by a simple solvothermal method for highly efficient electrochemical reduction of CO2 to formate. Of them, the 2.5% Sn-doped Bi2O3 NSs exhibited the highest faradaic efficiency (FE) of 93.4% with a current density of 24.3 mA cm(-2) for formate at -0.97 V in the H-cell and a maximum current density of nearly 50 mA cm(-2) was achieved at -1.27 V. The formate FE is stable maintained at over 90% in a wide potential range from -0.87 V to -1.17 V. Electrochemical and density functional theory (DFT) analyses of undoped and Sn doped Bi2O3 NSs indicated that the strong synergistic effect between Sn and Bi is responsible for the enhancement in the adsorption capacity of the OCHO* intermediate, and thus the activity for formate production. In addition, we coupled 2.5% Sn-doped Bi2O3 NSs with a dimensionally stable anode (DSA) to realize battery-driven highly active CO2RR and OER with decent activity and efficiency.
引用
收藏
页码:19610 / 19616
页数:7
相关论文
共 50 条
  • [21] Sn/SnO2 Nanocomposite Encapsulated on Nitrogen-Doped Carbon as a Highly Efficient Catalyst for the Electrochemical Reduction of CO2 to Formate
    Samanta, Rajib
    Kempasiddaiah, Manjunatha
    Trivedi, Ravi Kumar
    Chakraborty, Brahmananda
    Barman, Sudip
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (13): : 5359 - 5370
  • [22] A Nanocomposite of Bismuth Clusters and Bi2O2CO3 Sheets for Highly Efficient Electrocatalytic Reduction of CO2 to Formate
    Lin, Li
    He, Xiaoyang
    Zhang, Xia-Guang
    Ma, Wenchao
    Zhang, Biao
    Wei, Diye
    Xie, Shunji
    Zhang, Qinghong
    Yi, Xiaodong
    Wang, Ye
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
  • [23] Bi2O2CO3 Nanosheets as Electrocatalysts for Selective Reduction of CO2 to Formate at Low Overpotential
    Lv, Weixin
    Bei, Jingjing
    Zhang, Rui
    Wang, Wenjuan
    Kong, Fenying
    Wang, Lei
    Wang, Wei
    ACS OMEGA, 2017, 2 (06): : 2561 - 2567
  • [24] Balanced Adsorption Toward Highly Selective Electrochemical Reduction of CO2 to Formate
    Su, Die
    Zhang, Jingru
    Liu, Jin
    Lv, Shengyao
    Xie, Zhuoyang
    Tu, Yunchuan
    Hu, Xiaohua
    Li, Cunpu
    Liu, Bin
    Wei, Zidong
    SMALL, 2025, 21 (01)
  • [25] Introduction of sulfur in Bi2O3 to boost water activation for enhancing the reduction of CO2 to formate
    Zheng, Qiuyu
    Luan, Shuting
    Feng, Yongqi
    Lv, Shi-Wen
    Zhang, Yi
    Cong, Yanqing
    JOURNAL OF POWER SOURCES, 2024, 601
  • [26] Electrochemical Reduction of CO2 to Formate on Nanoparticulated Bi-Sn-Sb Electrodes
    Avila-Bolivar, Beatriz
    Montiel, Vicente
    Solla-Gullon, Jose
    CHEMELECTROCHEM, 2022, 9 (09):
  • [27] A Highly Efficient Bi-based Electrocatalyst for the Reduction of CO2 to Formate
    Shao, Luyu
    Lv, Weixin
    Zhang, Rui
    Kong, Fenying
    Cheng, Lanzi
    Wang, Wei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (01): : 114 - 125
  • [28] Regenerative in situ formed Bi nanoparticles on Bi2O2CO3 nanosheets with Bi-vacancies for efficient and stable photocatalytic CO2 reduction to formate
    Wen, Donglian
    Zhao, Jie
    You, Yang
    Huang, Liang
    Zhu, Haoheng
    Zhang, Chuanghui
    Bu, Donglei
    Huang, Shaoming
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (17) : 6245 - 6255
  • [29] Sn-doped CeO2 Nanorods as High-Performance Electrocatalysts for CO2 Reduction to Formate
    Ning, Shunlian
    Guo, Zhiwei
    Wang, Jigang
    Huang, Shaobin
    Chen, Shaowei
    Kang, Xiongwu
    CHEMELECTROCHEM, 2021, 8 (14): : 2680 - 2685
  • [30] Efficient CO2 reduction to formate in a photoanode-driven photoelectrocatalysis system using a Bi2Se3/Bi2O3 nanocomposite cathode
    Yang, Huimin
    Gao, Fanfan
    Zhou, Wenjing
    Gao, Nan
    Zhang, Dingding
    Li, Zhifang
    Nan, Cheng
    APPLIED SURFACE SCIENCE, 2023, 623