Wind Energy Potential Assessment of some Sites in Burundi using Statistical Modelling

被引:4
作者
Placide, Gatoto [1 ]
Lollchund, Michel Roddy [2 ]
Dalso, Gace Athanase [3 ]
机构
[1] Univ Rwanda, Ecole Normale Super Burundi, ACE ESD, Kigali, Rwanda
[2] Univ Mauritius, Dept Phys, Reduit, Mauritius
[3] Univ Rwanda, Dept Phys, Kigali, Rwanda
来源
2021 IEEE PES/IAS POWERAFRICA CONFERENCE | 2021年
关键词
Goodness-of-fit test; Probability Density Functions; wind speed; wind energy potential; PROBABILITY-DISTRIBUTIONS; SPEED DATA;
D O I
10.1109/POWERAFRICA52236.2021.9543186
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The aim of this study is to estimate the wind energy potential at four locations in Burundi: Bujumbura, Gisozi, Gitega and Mpota. For this endeavour, some commonly used statistical probability distribution functions (PDFs) (i.e. Burr, Gamma, Lognormal, Normal, Rayleigh and Weibull) are assessed in the modelling of around 20 years of daily wind speed data measured at the four locations. The parameters for each PDF are estimated using the Maximum likelihood method and goodness-of-fit tests are used to assess how well the PDFs fit the data. It is found that the Burr distribution fits all the data at 0.05 significance level. Finally, computed Burr parameters for monthly wind speed datasets are used to estimate the mean monthly wind power density (WPD) at each location. Results obtained show that Bujumbura has high potential for wind energy harvesting.
引用
收藏
页码:219 / 223
页数:5
相关论文
共 20 条
[1]   Assessment of wind energy in Iran: A review [J].
Alamdari, P. ;
Nematollahi, O. ;
Mirhosseini, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (01) :836-860
[2]  
Almutairi A., 2016, 2016 IEEE ELECT POWE, DOI [10.1109/EPEC.2016.7771707, DOI 10.1109/EPEC.2016.7771707]
[3]  
Arnould Eric J., 1981, DRAFT ENV PROFILE BU
[4]  
Bamber P., 2014, BURUNDI ENERGY GLOBA
[5]  
Banuelos-Ruedas F., 2011, Wind Farm: Technical Regulations, Potential Estimation and, Siting Assessment, DOI DOI 10.5772/20669
[6]  
Bashahu M., 2016, Mod. Environ. Sci. Eng, V2, P740, DOI [10.15341/mese(2333-2581)/11.02.2016/005, DOI 10.15341/MESE(2333-2581)/11.02.2016/005]
[7]   A review of wind speed probability distributions used in wind energy analysis Case studies in the Canary Islands [J].
Carta, J. A. ;
Ramirez, P. ;
Velazquez, S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (05) :933-955
[8]  
Dhunny AZ, 2014, INT J RENEW ENERGY R, V4, P1056
[9]  
Jiang YN, 2006, ENERG EXPLOR EXPLOIT, V24, P211, DOI 10.1260/014459806779367509
[10]  
Kidmo D.K., 2015, Revue des Energies Renouvelables, V18, P105