Unbounded ABE via Bilinear Entropy Expansion, Revisited

被引:54
作者
Chen, Jie [1 ]
Gong, Junqing [2 ]
Kowalczyk, Lucas [3 ]
Wee, Hoeteck [3 ,4 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Univ Lyon, UCBL, INRIA, ENS Lyon,Lab LIP,CNRS,ENSL, Lyon, France
[3] Columbia Univ, New York, NY USA
[4] CNRS, ENS, Paris, France
来源
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT I | 2018年 / 10820卷
基金
欧盟地平线“2020”; 中国国家自然科学基金; 美国国家科学基金会;
关键词
DUAL SYSTEM ENCRYPTION; PRIME-ORDER GROUPS; SECURE IBE; HIBE;
D O I
10.1007/978-3-319-78381-9_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present simpler and improved constructions of unbounded attribute-based encryption (ABE) schemes with constantsize public parameters under static assumptions in bilinear groups. Concretely, we obtain: a simple and adaptively secure unbounded ABE scheme in composite-order groups, improving upon a previous construction of Lewko and Waters (Eurocrypt '11) which only achieves selective security; an improved adaptively secure unbounded ABE scheme based on the k-linear assumption in prime-order groups with shorter ciphertexts and secret keys than those of Okamoto and Takashima (Asiacrypt '12); the first adaptively secure unbounded ABE scheme for arithmetic branching programs under static assumptions. At the core of all of these constructions is a "bilinear entropy expansion" lemma that allows us to generate any polynomial amount of entropy starting from constant-size public parameters; the entropy can then be used to transform existing adaptively secure "bounded" ABE schemes into unbounded ones.
引用
收藏
页码:503 / 534
页数:32
相关论文
共 27 条
[1]  
Agrawal Shashank, 2017, ACM CCS
[2]  
[Anonymous], 1996, SECURE SCHEMES SECRE
[3]   Dual System Encryption Framework in Prime-Order Groups via Computational Pair Encodings [J].
Attrapadung, Nuttapong .
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT II, 2016, 10032 :591-623
[4]  
Attrapadung N, 2014, LECT NOTES COMPUT SC, V8441, P557, DOI 10.1007/978-3-642-55220-5_31
[5]   Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security [J].
Brakerski, Zvika ;
Vaikuntanathan, Vinod .
ADVANCES IN CRYPTOLOGY (CRYPTO 2016), PT III, 2016, 9816 :363-384
[6]   Improved Dual System ABE in Prime-Order Groups via Predicate Encodings [J].
Chen, Jie ;
Gay, Romain ;
Wee, Hoeteck .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015, PT II, 2015, 9057 :595-624
[7]   Fully, (Almost) Tightly Secure IBE and Dual System Groups [J].
Chen, Jie ;
Wee, Hoeteck .
ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT II, 2013, 8043 :435-460
[8]  
Escala A, 2013, LECT NOTES COMPUT SC, V8043, P129, DOI 10.1007/978-3-642-40084-1_8
[9]   Tightly CCA-Secure Encryption Without Pairings [J].
Gay, Romain ;
Hofheinz, Dennis ;
Kiltz, Eike ;
Wee, Hoeteck .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2016, PT I, 2016, 9665 :1-27
[10]   Efficient IBE with Tight Reduction to Standard Assumption in the Multi-challenge Setting [J].
Gong, Junqing ;
Dong, Xiaolei ;
Chen, Jie ;
Cao, Zhenfu .
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT II, 2016, 10032 :624-654