Multi swarm bare bones particle swarm optimization with distribution adaption

被引:22
作者
Vafashoar, Reza [1 ]
Meybodi, Mohammad Reza [1 ]
机构
[1] Amirkabir Univ Technol, Comp Engn & Informat Technol Dept, Soft Comp Lab, Tehran, Iran
关键词
Particle swarm optimization; Multi-swarm PSO; Global numerical optimization; Learning automata; Cellular learning automata; ALGORITHM; ADAPTATION;
D O I
10.1016/j.asoc.2016.06.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bare bones PSO is a simple swarm optimization approach that uses a probability distribution like Gaussian distribution in the position update rules. However, due to its nature, Bare bones PSO is highly prone to premature convergence and stagnation. The characteristics of the probability distribution functions used in the update rule have a tense impact on the performance of the bare bones PSO. As a result, this paper investigates the use of different methods for estimating the probability distributions used in the update rule. Four methods or strategies are developed that are using Gaussian or multivariate Gaussian distributions. The choice of an appropriate updating strategy for each particle greatly depends on the characteristics of the fitness landscape that surrounds the swarm. To deal with issue, the cellular learning automata model is incorporated with the proposed bare bones PSO, which is able to adaptively learn suitable updating strategies for the particles. Through the interactions among its elements and the learning capabilities of its learning automata, cellular learning automata gradually learns to select the best updating rules for the particles based on their surrounding fitness landscape. This paper also, investigates a new and simple method for adaptively refining the covariance matrices of multivariate Gaussian distributions used in the proposed updating strategies. The proposed method is compared with some other well-known particle swarm approaches. The results indicate the superiority of the proposed approach in terms of the accuracy of the achieved results and the speed in finding appropriate solutions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:534 / 552
页数:19
相关论文
共 50 条
  • [41] A novel multi-swarm particle swarm optimization for feature selection
    Qiu, Chenye
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2019, 20 (04) : 503 - 529
  • [42] Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer
    Zhang, Yong
    Gong, Dun-wei
    Ding, Zhong-hai
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) : 13933 - 13941
  • [43] Particle Swarm Optimization for multi-chiller system: Capacity configuration and load distribution
    Cha, Jae Hwan
    Park, Jiwon
    Yeon, Sang Hun
    Yoon, Yeobeom
    Lee, Kwang Ho
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [44] Visualizing particle swarm optimization - Gaussian particle swarm optimization
    Secrest, BR
    Lamont, GB
    PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 198 - 204
  • [45] Unified particle swarm delivers high efficiency to particle swarm optimization
    Tsai, Hsing-Chih
    APPLIED SOFT COMPUTING, 2017, 55 : 371 - 383
  • [46] Global optimization of an optical chaotic system by Chaotic Multi Swarm Particle Swarm Optimization
    Mukhopadhyay, Sumona
    Banerjee, Santo
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 917 - 924
  • [47] A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems
    Wang, Yong
    Cai, Zixing
    FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2009, 3 (01): : 38 - 52
  • [48] A New Multi-swarm Particle Swarm Optimization for Robust Optimization Over Time
    Yazdani, Danial
    Trung Thanh Nguyen
    Branke, Juergen
    Wang, Jin
    APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2017), PT II, 2017, 10200 : 99 - 109
  • [49] A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems
    Yong Wang
    Zixing Cai
    Frontiers of Computer Science in China, 2009, 3 : 38 - 52
  • [50] Multi-swarm Optimization Algorithm Based on Firefly and Particle Swarm Optimization Techniques
    Kadavy, Tomas
    Pluhacek, Michal
    Viktorin, Adam
    Senkerik, Roman
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 405 - 416