Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents

被引:9
|
作者
McGaughy, Kyle [1 ]
Reza, M. Toufiq [1 ]
机构
[1] Florida Inst Technol, Dept Biomed & Chem Engn & Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA
关键词
carbon capture; deep eutectic solvent; techno-economic analysis; CHOLINE CHLORIDE; CARBON-DIOXIDE; IONIC LIQUIDS; MIXTURES; SOLUBILITY; UREA; SO2; GAS;
D O I
10.3390/en13020438
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, CO2 and SO2 captures from post-combustion flue gas from a pulverized coal-fired power plant were evaluated using deep eutectic solvents (DES) to replace existing mono-ethanol amine (MEA) and CanSolv technologies. The system design of the DES-based CO2 and SO2 capture was based on the National Energy Technology Laboratory's (NETL) 550 MWe pulverized coal-fired power plant model using Illinois #06 coal. Two of the most studied DES (choline chloride and urea at a 1:2 molar ratio and methyltriphenylphosphonium bromide (METPB) and ethylene glycol at a 1:3 molar ratio) for CO2 and SO2 capture were evaluated for this system analysis. Physical properties of DES were evaluated using both density functional theory (DFT)-based modeling as well as with documented properties from the literature. A technoeconomic assessment (TEA) was completed to assess DES ability to capture CO2 and SO2. Both solvents were able to fully dissolve and capture all SO2 present in the flue gas. It was also found from the system analyses that choline chloride and urea outperformed METPB and ethylene glycol (had a lower final cost) when assessed at 10-30% CO2 capture at high operating pressures (greater than 10 bar). At high system sizes (flow rate of greater than 50,000 kmoles DES per hour), choline chloride:urea was more cost effective than METPB:ethylene glycol. This study also establishes a modeling framework to evaluate future DES for physical absorption systems by both thermophysical and economic objectives. This framework can be used to greatly expedite DES candidate screening in future studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] DEEP EUTECTIC SOLVENTS FOR CO2 CAPTURE IN POST-COMBUSTION PROCESSES
    Mihaila, Eliza Gabriela
    Aruxandei, Diana Constantinescu
    Doncea, Sanda Maria
    Oancea, Florin
    Dinca, Cristian
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2021, 66 (02): : 233 - 246
  • [2] A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants
    Wang, Yuan
    Zhao, Li
    Otto, Alexander
    Robinius, Martin
    Stolten, Detlef
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 650 - 665
  • [3] Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants
    Zhai, Haibo
    Rubin, Edward S.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1321 - 1328
  • [4] Analysis of CO2 post-combustion capture in coal-fired power plants integrated with renewable energies
    Carapellucci, Roberto
    Giordano, Lorena
    Vaccarelli, Maura
    70TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, ATI2015, 2015, 82 : 350 - 357
  • [5] China baseline coal-fired power plant with post-combustion CO2 capture: 2. Techno-economics
    Singh, Surinder
    Lu, Haoren
    Cui, Qian
    Li, Chufu
    Zhao, Xinglei
    Xu, Wenqiang
    Ku, Anthony Y.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 78 : 429 - 436
  • [6] China baseline coal-fired power plant with post-combustion CO2 capture: 1. Definitions and performance
    Cui, Qian
    Lu, Haoren
    Li, Chufu
    Singh, Surinder
    Ba, Liming
    Zhao, Xinglei
    Ku, Anthony Y.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 78 : 37 - 47
  • [7] Conventional and Advanced Exergy Analysis of Post-combustion CO2 Capture in the Context of Supercritical Coal-Fired Power Plant
    Olaleye, Akeem K.
    Wang, Meihong
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 1: FUNDAMENTALS, 2018, : 1235 - 1248
  • [8] Membrane properties required for post-combustion CO2 capture at coal-fired power plants
    Roussanaly, Simon
    Anantharaman, Rahul
    Lindqvist, Karl
    Zhai, Haibo
    Rubin, Edward
    JOURNAL OF MEMBRANE SCIENCE, 2016, 511 : 250 - 264
  • [9] Techno-economic analysis of a 300 MWe coal-fired power plant retrofitted with post-combustion CO2 capture
    Zhang, Dan
    Xu, Minghou
    Li, Aijun
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2012, 7 : S201 - S208
  • [10] Integrating mid-temperature solar heat and post-combustion CO2-capture in a coal-fired power plant
    Zhao, Yawen
    Hong, Hui
    Zhang, Xiaosong
    Jin, Hongguang
    SOLAR ENERGY, 2012, 86 (11) : 3196 - 3204