Enhancing Human Action Recognition through Temporal Saliency

被引:0
|
作者
Adeli, Vida [1 ]
Fazl-Ersi, Ehsan [1 ]
Harati, Ahad [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Razavi Khorasan, Iran
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018) | 2018年
关键词
Action recognition; Motion; Region proposal; Convolutional Neural Networks; Actionness;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images and videos have become ubiquitous in every aspects of life due to the growing digital recording devices. It has encouraged the development of algorithms that can analyze video content and perform human action recognition. This paper investigates the challenging problem of action recognition by outlining a new approach to represent a video sequence. A novel framework is developed to produce informative features for action labeling in a weakly-supervised learning (WSL) approach both during training and testing. Using appearance and motion information, the goal is to identify frame regions that are likely to contain actions. A three-stream convolutional neural network is adopted and improved by proposing a method based on extracting actionness regions. This results in less computation as it is processing only some parts of an RGB frame and also interpret less non-activity related regions, which can mislead the recognition system. We exploit UCF sports dataset as our evaluation benchmark, which is a dataset of realistic sports videos. We will show that our proposed approach could outperform other existing state-of-the art methods.
引用
收藏
页码:176 / 181
页数:6
相关论文
共 50 条
  • [1] Mining Spatial Temporal Saliency Structure for Action Recognition
    Liu, Yinan
    Wu, Qingbo
    Xu, Linfeng
    Wu, Bo
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (10): : 2643 - 2646
  • [2] Spatial-temporal saliency action mask attention network for action recognition
    Jiang, Min
    Pan, Na
    Kong, Jun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [3] Human-Body Action Recognition Based on Dense Trajectories and Video Saliency
    Gao Deyong
    Kang Zibing
    Wang Song
    Wang Yangping
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (24)
  • [4] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Wu, Qianhan
    Huang, Qian
    Li, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16409 - 16430
  • [5] IMPROVING HUMAN ACTION RECOGNITION BY TEMPORAL ATTENTION
    Liu, Zhikang
    Tian, Ye
    Wang, Zilei
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 870 - 874
  • [6] Action recognition using saliency learned from recorded human gaze
    Stefic, Daria
    Patras, Ioannis
    IMAGE AND VISION COMPUTING, 2016, 52 : 195 - 205
  • [7] Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition
    Tian, Yi
    Kong, Yu
    Ruan, Qiuqi
    An, Gaoyun
    Fu, Yun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1748 - 1762
  • [8] Saliency-aware Spatio-temporal Modeling for Action Recognition on Unmanned Aerial Vehicles
    Sheng, Xiaoxiao
    Shen, Zhiqiang
    Xiao, Gang
    IEEE LATIN AMERICA TRANSACTIONS, 2024, 22 (12) : 1026 - 1033
  • [9] Temporal segment dropout for human action video recognition
    Zhang, Yu
    Chen, Zhengjie
    Xu, Tianyu
    Zhao, Junjie
    Mi, Siya
    Geng, Xin
    Zhang, Min-Ling
    PATTERN RECOGNITION, 2024, 146
  • [10] HUMAN ACTION RECOGNITION VIA SPATIAL AND TEMPORAL METHODS
    Eroglu, Hulusi
    Gokce, C. Onur
    Ilk, H. Gokhan
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 104 - 107