Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)

被引:689
作者
Bulua, Ariel C. [1 ,4 ]
Simon, Anna [2 ]
Maddipati, Ravikanth [1 ]
Pelletier, Martin [1 ]
Park, Heiyoung [1 ]
Kim, Kye-Young [3 ]
Sack, Michael N. [3 ]
Kastner, Daniel L. [2 ]
Siegel, Richard M. [1 ]
机构
[1] NHLBI, Immunoregulat Sect, Autoimmun Branch, NIH, Bethesda, MD 20892 USA
[2] NHLBI, Inflammatory Biol Sect, Clin Invest Lab, NIAMSD,NIH, Bethesda, MD 20892 USA
[3] NHLBI, Lab Mitochondrial Biol Cardiometabol Syndromes, Translat Med Branch, NIH, Bethesda, MD 20892 USA
[4] Mt Sinai Sch Med, Inst Immunol, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
CHRONIC GRANULOMATOUS-DISEASE; NITRIC-OXIDE SYNTHASE; INNATE IMMUNE-RESPONSES; NF-KAPPA-B; OXIDATIVE STRESS; NADPH OXIDASE; INFLAMMASOME ACTIVATION; INDEPENDENT ACTIVATION; ENDOPLASMIC-RETICULUM; NALP3; INFLAMMASOME;
D O I
10.1084/jem.20102049
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Reactive oxygen species (ROS) have an established role in inflammation and host defense, as they kill intracellular bacteria and have been shown to activate the NLRP3 inflammasome. Here, we find that ROS generated by mitochondrial respiration are important for normal lipopolysaccharide (LPS)-driven production of several proinflammatory cytokines and for the enhanced responsiveness to LPS seen in cells from patients with tumor necrosis factor receptor-associated periodic syndrome (TRAPS), an autoinflammatory disorder caused by missense mutations in the type 1 TNF receptor (TNFR1). We find elevated baseline ROS in both mouse embryonic fibroblasts and human immune cells harboring TRAPS-associated TNFR1 mutations. A variety of antioxidants dampen LPS-induced MAPK phosphorylation and inflammatory cytokine production. However, gp91(phox) and p22(phox) reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits are dispensable for inflammatory cytokine production, indicating that NADPH oxidases are not the source of proinflammatory ROS. TNFR1 mutant cells exhibit altered mitochondrial function with enhanced oxidative capacity and mitochondria! ROS generation, and pharmacological blockade of mitochondria! ROS efficiently reduces inflammatory cytokine production after LPS stimulation in cells from TRAPS patients and healthy controls. These findings suggest that mitochondria! ROS may be a novel therapeutic target for TRAPS and other inflammatory diseases.
引用
收藏
页码:519 / 533
页数:15
相关论文
共 64 条
  • [1] Mitochondria, oxidants, and aging
    Balaban, RS
    Nemoto, S
    Finkel, T
    [J]. CELL, 2005, 120 (04) : 483 - 495
  • [2] Autoimmune thyroiditis and ROS
    Burek, C. Lynne
    Rose, Noel R.
    [J]. AUTOIMMUNITY REVIEWS, 2008, 7 (07) : 530 - 537
  • [3] Enhanced inflammatory responses of chronic granulomatous disease leukocytes involve ROS-independent activation of NF-κB
    Bylund, Johan
    MacDonald, Kelly L.
    Brown, Kelly L.
    Mydel, Piotr
    Collins, L. Vincent
    Hancock, Robert E. W.
    Speert, David P.
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (04) : 1087 - 1096
  • [4] HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species
    Capasso, Melania
    Bhamrah, Mandeep K.
    Henley, Tom
    Boyd, Robert S.
    Langlais, Claudia
    Cain, Kelvin
    Dinsdale, David
    Pulford, Karen
    Khan, Mahmood
    Musset, Boris
    Cherny, Vladimir V.
    Morgan, Deri
    Gascoyne, Randy D.
    Vigorito, Elena
    DeCoursey, Thomas E.
    MacLennan, Ian C. M.
    Dyer, Martin J. S.
    [J]. NATURE IMMUNOLOGY, 2010, 11 (03) : 265 - U12
  • [5] Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria
    Cardenas, Cesar
    Miller, Russell A.
    Smith, Ian
    Bui, Thi
    Molgo, Jordi
    Mueller, Marioly
    Vais, Horia
    Cheung, King-Ho
    Yang, Jun
    Parker, Ian
    Thompson, Craig B.
    Birnbaum, Morris J.
    Hallows, Kenneth R.
    Foskett, J. Kevin
    [J]. CELL, 2010, 142 (02) : 270 - 283
  • [6] HYDROPEROXIDE METABOLISM IN MAMMALIAN ORGANS
    CHANCE, B
    SIES, H
    BOVERIS, A
    [J]. PHYSIOLOGICAL REVIEWS, 1979, 59 (03) : 527 - 605
  • [7] Role of Increased ROS Dissipation in Prevention of T1D Lessons from the ALR Mouse
    Chen, Jing
    Gusdon, Aaron M.
    Thayer, Terri C.
    Mathews, Clayton E.
    [J]. IMMUNOLOGY OF DIABETES V: FROM BENCH TO BEDSIDE, 2008, 1150 : 157 - 166
  • [8] Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress
    Chernyak, Boris V.
    Izyumov, Denis S.
    Lyamzaev, Konstantin G.
    Pashkovskaya, Alina A.
    Pletjushkina, Olga Y.
    Antonenko, Yuri N.
    Sakharov, Dmitrii V.
    Wirtz, Karel W. A.
    Skulachev, Vladimir P.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6): : 525 - 534
  • [9] Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses
    Chi, HB
    Barry, SP
    Roth, RJ
    Wu, JJ
    Jones, EA
    Bennettt, AM
    Flavell, RA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (07) : 2274 - 2279
  • [10] Hereditary auto-inflammatory disorders and biologics
    Church, Leigh D.
    Churchman, Sarah M.
    Hawkins, Philip N.
    McDermott, Michael F.
    [J]. SPRINGER SEMINARS IN IMMUNOPATHOLOGY, 2006, 27 (04): : 494 - 508