Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations

被引:85
作者
Barles, G
Souganidis, PE
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, F-37200 Tours, France
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
asymptotic behavior; space-time periodic solutions; quasi-linear parabolic equations; strong maximum principle; viscosity solutions;
D O I
10.1137/S0036141000369344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers (i) the existence of space-time periodic solutions of quasi-linear parabolic equations and (ii) the convergence, as t --> infinity, of space periodic solutions of the initial value problem of quasi-linear parabolic equations to the space-time periodic solutions.
引用
收藏
页码:1311 / 1323
页数:13
相关论文
共 22 条
[1]  
Barles G., 1991, DIFFER INTEGRAL EQU, V4, P263
[2]  
Barles G., 1991, DIFFERENTIAL INTEGRA, V4, P241
[3]  
BARLES G, COUNTEREXAMPLES ASYM
[4]  
Caffarelli L. A., 1995, AM MATH SOC C PUBL, V43
[5]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[6]  
Crandall MG, 1998, INDIANA U MATH J, V47, P1293
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]  
FATHI A, FAILURE CONVERGENCE
[9]  
FRIEDLIN MI, 1985, ANN MATH STUD, V109
[10]   VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ISHII, H ;
LIONS, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :26-78