Diagonally Aligned Squared Metal Nano-pillar with Increased Hotspot Density as a Highly Reproducible SERS Substrate

被引:12
作者
Chamuah, Nabadweep [1 ]
Vaidya, Gayatri P. [2 ]
Joseph, Aneesh M. [2 ]
Nath, Pabitra [1 ]
机构
[1] Tezpur Univ, Appl Photon & Nanophoton Lab, Tezpur 784028, Assam, India
[2] Indian Inst Technol, Dept Elect Engn, IITBNF, CEN, Bombay 400076, Maharashtra, India
关键词
SERS; Metal nanostructure; LSPR; Reproducibility; Hotspot; ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON RESONANCE; NANOPILLAR ARRAYS; LARGE-AREA; NANOSPHERE LITHOGRAPHY; SILVER NANOPARTICLES; SPECTROSCOPY; FABRICATION; DNA; NANOSENSORS;
D O I
10.1007/s11468-016-0393-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal nanostructure on dielectric substrate with increased hotspot density has drawn considerable research interest in recent years toward the study of surface-enhanced Raman spectroscopy (SERS). In this paper, we report the fabrication of a diagonally aligned squared metal nano-pillar (SMNP) on a dielectric substrate and revealed it as an efficient SERS substrate with increased hotspot density for sensing of Raman active materials. Due to dipolar coupling and lightening rod effect between the neighboring nano-pillars, the localized surface plasmon resonance (LSPR) field intensity increased significantly in the space between two neighboring SMNP which would lead to the enhancement of SERS signal. The SMNP has been fabricated using electron beam lithographic (EBL) technique with hotspot density of 2.45 x 10(7)/mm(2). With the designed SERS substrate an average enhancement factor (EF) of 3.27 x 10(8) has been observed with relative standard deviation of similar to 13 %.
引用
收藏
页码:1353 / 1358
页数:6
相关论文
共 46 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]  
[Anonymous], J FLUORESC, V14, P355
[3]   Plasmonics for future biosensors [J].
Brolo, Alexandre G. .
NATURE PHOTONICS, 2012, 6 (11) :709-713
[4]   Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors [J].
Caldwell, Joshua D. ;
Glembocki, Orest ;
Bezares, Francisco J. ;
Bassim, Nabil D. ;
Rendell, Ronald W. ;
Feygelson, Mariya ;
Ukaegbu, Maraizu ;
Kasica, Richard ;
Shirey, Loretta ;
Hosten, Charles .
ACS NANO, 2011, 5 (05) :4046-4055
[5]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[6]   Periodically Varying Height in Metal Nano-pillars for Enhanced Generation of Localized Surface Plasmon Field [J].
Chamuah, Nabadweep ;
Nath, Pabitra .
PLASMONICS, 2015, 10 (06) :1367-1372
[7]   Multi-resonant plasmonic nanodome arrays for label-free biosensing applications [J].
Choi, Charles J. ;
Semancik, Steve .
NANOSCALE, 2013, 5 (17) :8138-8145
[8]   Surface-enhanced Raman nanodomes [J].
Choi, Charles J. ;
Xu, Zhida ;
Wu, Hsin-Yu ;
Liu, Gang Logan ;
Cunningham, Brian T. .
NANOTECHNOLOGY, 2010, 21 (41)
[9]   Detection of Pesticides and Metabolites Using Surface-Enhanced Raman Spectroscopy (SERS): Acephate [J].
Clauson, Susan L. ;
Sylvia, James M. ;
Arcury, Thomas A. ;
Summers, Phillip ;
Spencer, Kevin M. .
APPLIED SPECTROSCOPY, 2015, 69 (07) :785-793
[10]  
Eskelinen AP, 2014, SMALL, V10, P1057, DOI [10.1002/smll.201302046, 10.1002/smll.201470035]