Empirical likelihood for average derivatives of hazard regression functions

被引:0
作者
Lu, Xuewen [1 ]
Sun, Jie
Qi, Yongcheng
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
基金
美国国家科学基金会;
关键词
average derivative; competing risks data; empirical likelihood; nonparametric hazard regression; single-index model;
D O I
10.1007/s00184-007-0124-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose an empirical likelihood ratio method for the inference about average derivatives in semiparametric hazard regression models for competing risks data. Empirical loglikelihood ratio for the vector of the average derivatives of a hazard regression function is defined and shown to be asymptotically chi-squared with degrees of freedom equal to the dimension of covariate vector. Monte Carlo simulation studies are presented to compare the empirical likelihood ratio method with the normal-approximation-based method.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 50 条
  • [41] Inferences in censored cost regression models with empirical likelihood
    Zhou, X. H.
    Qin, G. S.
    Lin, H. Z.
    Li, G.
    STATISTICA SINICA, 2006, 16 (04) : 1213 - 1232
  • [42] Generalized empirical likelihood inference in partial linear regression model for longitudinal data
    Tian, Ruiqin
    Xue, Liugen
    STATISTICS, 2017, 51 (05) : 988 - 1005
  • [43] Empirical likelihood for least absolute relative error regression
    Li, Zhouping
    Lin, Yuanyuan
    Zhou, Guoliang
    Zhou, Wang
    TEST, 2014, 23 (01) : 86 - 99
  • [44] Semiparametric regression using empirical likelihood with shape information
    Zhong, Weibin
    Makambi, Kepher H.
    Yuan, Ao
    STATISTICS, 2020, 54 (03) : 441 - 468
  • [45] Empirical likelihood and quantile regression in longitudinal data analysis
    Tang, Cheng Yong
    Leng, Chenlei
    BIOMETRIKA, 2011, 98 (04) : 1001 - 1006
  • [46] Linear regression analysis with inequality constraints on the regression parameters via empirical likelihood
    Zheng, Ming
    Yu, Wen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (09) : 1782 - 1792
  • [47] Empirical Likelihood Method for General Additive-Multiplicative Hazard Models
    Yu, Wen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (16) : 2977 - 2990
  • [48] Empirical Likelihood for Single-Index Regression Models under Negatively Associated Errors
    Lin, Zheng-Yan
    Wang, Ran
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (09) : 1854 - 1868
  • [49] Empirical Likelihood for Non-Smooth Criterion Functions
    Molanes Lopez, Elisa M.
    Van Keilegom, Ingrid
    Veraverbeke, Noel
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (03) : 413 - 432
  • [50] Signed-rank regression inference via empirical likelihood
    Bindele, Huybrechts F.
    Zhao, Yichuan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (04) : 729 - 739