QUADRATIC EQUATIONS IN HYPERBOLIC GROUPS ARE NP-COMPLETE

被引:8
|
作者
Kharlampovich, Olga [1 ]
Mohajeri, Atefeh [2 ]
Taam, Alexander [3 ,4 ]
Vdovina, Alina [5 ]
机构
[1] CUNY Hunter Coll, Dept Math & Stat, 695 Pk Ave, New York, NY 10065 USA
[2] McGill Univ, Dept Math & Stat, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
[3] CUNY, Dept Math, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA
[4] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[5] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
FREE-PRODUCTS; WICKS FORMS; NUMBER;
D O I
10.1090/tran/6829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in a torsion-free hyperbolic group Gamma, the length of the value of each variable in a minimal solution of a quadratic equation Q = 1 is bounded by N vertical bar Q vertical bar(3) for an orientable equation, and by N vertical bar Q vertical bar(4) for a nonorientable equation, where vertical bar Q vertical bar is the length of the equation and the constant N can be computed. We show that the problem, whether a quadratic equation in G has a solution, is in NP, and that there is a PSpace algorithm for solving arbitrary equations in Gamma. If additionally Gamma is non-cyclic, then this problem (of deciding existence of a solution) is NP-complete. We also give a slightly larger bound for minimal solutions of quadratic equations in a toral relatively hyperbolic group.
引用
收藏
页码:6207 / 6238
页数:32
相关论文
共 32 条
  • [21] On the asymptotics of visible elements and homogeneous equations in surface groups
    Antolin, Yago
    Ciobanu, Laura
    Viles, Noelia
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (04) : 619 - 638
  • [22] Symmetric complete sum-free sets in cyclic groups
    Haviv, Ishay
    Levy, Dan
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (02) : 931 - 956
  • [23] Biembeddings of metacyclic groups and triangulations of orientable surfaces by complete graphs
    Garnnell, M. J.
    Knor, M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [24] Complete solutions of the simultaneous Pell's equations (a2
    Dou, Cencen
    Luo, Jiagui
    AIMS MATHEMATICS, 2023, 8 (08): : 19353 - 19373
  • [25] SOLVING SYSTEMS OF QUADRATIC EQUATIONS VIA EXPONENTIAL-TYPE GRADIENT DESCENT ALGORITHM
    Huang, Meng
    Xu, Zhiqiang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (04) : 638 - 660
  • [26] Local limit theorems in relatively hyperbolic groups II: the non-spectrally degenerate case
    Dussaule, Matthieu
    COMPOSITIO MATHEMATICA, 2022, 158 (04) : 764 - 830
  • [27] LIMIT CYCLES FOR QUADRATIC AND CUBIC PLANAR DIFFERENTIAL EQUATIONS UNDER POLYNOMIAL PERTURBATIONS OF SMALL DEGREE
    Martins, Ricardo M.
    Gomide, Otavio M. L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3353 - 3386
  • [28] Exploring the 2-Part of Class Groups in Quadratic Fields: Perspectives on the Cohen-Lenstra Conjectures
    Wang, Yong
    Zhang, Huili
    Zhou, Ying
    Deng, Haopeng
    Li, Lingyue
    MATHEMATICS, 2025, 13 (01)
  • [29] Structure of 2-class groups in the Z2-extensions of certain real quadratic fields
    Chattopadhyay, Jaitra
    Laxmi, H.
    Saikia, Anupam
    RESEARCH IN NUMBER THEORY, 2023, 9 (04)
  • [30] Complete solutions of the simultaneous Pell equations x2-24y2=1 and y2 - pz2=1
    Ai, Xiaochuan
    Chen, Jianhua
    Zhang, Silan
    Hu, Hao
    JOURNAL OF NUMBER THEORY, 2015, 147 : 103 - 108