Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates

被引:25
作者
Chang, S. -L. [1 ]
Chien, C. S.
机构
[1] Southern Taiwan Univ, Ctr Gen Educ, Tainan 710, Taiwan
[2] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
关键词
nonlinear Schrodinger equation; angular momentum; bifurcation; finite difference method; adaptive continuation method; PERTURBED NEUMANN PROBLEMS; PEAK SOLUTIONS; VORTEX; VORTICES; SYSTEMS; EQUATION;
D O I
10.1016/j.cpc.2007.06.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe adaptive continuation algorithms for computing energy levels of the Bose-Einstein condensates (BEC) with emphasis on the rotating BEC. We show that the rotating BEC in the complex plane is governed by special two-coupled nonlinear Schrodinger equations (NLS) in the real domain, which makes the eigenvalues of the discrete coefficient matrix at least double. A predictor-corrector continuation method is used to trace solution curves of the rotating BEC defined in square domains. The wave functions of the rotating BEC can be easily obtained whenever the solution curves of the two-coupled NLS are numerically traced. From the physical point of view, the proposed algorithm has the advantage that the energy levels of the system are computed intuitively, where the energy information of the associated Schrodinger eigenvalue problem is fully exploited. The superfluid density we obtain on the first solution branch resembles the figure shown in [J.R. Anglin, W. Ketterle, Nature 416 (2002) 211]. We also obtain superfluid densities on the other solution branches, which to the best of our knowledge, have never shown up in the literatures. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:707 / 719
页数:13
相关论文
共 31 条
  • [21] Multiple interior peak solutions for some singularly perturbed Neumann problems
    Gui, CF
    Wei, JC
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) : 1 - 27
  • [22] Multiple boundary peak solutions for some singularly perturbed Neumann problems
    Gui, CF
    Wei, JC
    Winter, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01): : 47 - 82
  • [23] Superconvergence of solution derivatives for the Shortley-Weller difference approximation of Poisson's equation. Part I: smoothness problems
    Li, ZC
    Yamamoto, T
    Fang, Q
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 151 (02) : 307 - 333
  • [24] Vortex formation in a stirred Bose-Einstein condensate
    Madison, KW
    Chevy, F
    Wohlleben, W
    Dalibard, J
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (05) : 806 - 809
  • [25] Vortices in a Bose-Einstein condensate
    Matthews, MR
    Anderson, BP
    Haljan, PC
    Hall, DS
    Wieman, CE
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (13) : 2498 - 2501
  • [26] Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils
    Mehrmann, V
    Watkins, D
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 22 (06) : 1905 - 1925
  • [27] PITAEVSKII LP, 1961, SOV PHYS JETP-USSR, V13, P451
  • [28] Vortex nucleation in a stirred Bose-Einstein condensate
    Raman, C
    Abo-Shaeer, JR
    Vogels, JM
    Xu, K
    Ketterle, W
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (21) : 2104021 - 2104024
  • [29] Dynamics of a single vortex line in a Bose-Einstein condensate
    Rosenbusch, P
    Bretin, V
    Dalibard, J
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (20) : 200403 - 200403
  • [30] Trefethen Lloyd N., 2000, Numerical Linear Algebra