Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates

被引:25
作者
Chang, S. -L. [1 ]
Chien, C. S.
机构
[1] Southern Taiwan Univ, Ctr Gen Educ, Tainan 710, Taiwan
[2] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
关键词
nonlinear Schrodinger equation; angular momentum; bifurcation; finite difference method; adaptive continuation method; PERTURBED NEUMANN PROBLEMS; PEAK SOLUTIONS; VORTEX; VORTICES; SYSTEMS; EQUATION;
D O I
10.1016/j.cpc.2007.06.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe adaptive continuation algorithms for computing energy levels of the Bose-Einstein condensates (BEC) with emphasis on the rotating BEC. We show that the rotating BEC in the complex plane is governed by special two-coupled nonlinear Schrodinger equations (NLS) in the real domain, which makes the eigenvalues of the discrete coefficient matrix at least double. A predictor-corrector continuation method is used to trace solution curves of the rotating BEC defined in square domains. The wave functions of the rotating BEC can be easily obtained whenever the solution curves of the two-coupled NLS are numerically traced. From the physical point of view, the proposed algorithm has the advantage that the energy levels of the system are computed intuitively, where the energy information of the associated Schrodinger eigenvalue problem is fully exploited. The superfluid density we obtain on the first solution branch resembles the figure shown in [J.R. Anglin, W. Ketterle, Nature 416 (2002) 211]. We also obtain superfluid densities on the other solution branches, which to the best of our knowledge, have never shown up in the literatures. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:707 / 719
页数:13
相关论文
共 31 条
  • [1] Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime
    Aftalion, A
    Du, Q
    [J]. PHYSICAL REVIEW A, 2001, 64 (06): : 1 - 11
  • [2] Vortex energy and vortex bending for a rotating Bose-Einstein condensate
    Aftalion, A
    Riviere, T
    [J]. PHYSICAL REVIEW A, 2001, 64 (04): : 436111 - 436117
  • [3] OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR
    ANDERSON, MH
    ENSHER, JR
    MATTHEWS, MR
    WIEMAN, CE
    CORNELL, EA
    [J]. SCIENCE, 1995, 269 (5221) : 198 - 201
  • [4] Bose-Einstein condensation of atomic gases
    Anglin, JR
    Ketterle, W
    [J]. NATURE, 2002, 416 (6877) : 211 - 218
  • [5] [Anonymous], 1997, NUMERICAL ANAL SPECT
  • [6] PLTMGC - A MULTIGRID CONTINUATION PROGRAM FOR PARAMETERIZED NONLINEAR ELLIPTIC-SYSTEMS
    BANK, RE
    CHAN, TF
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 540 - 559
  • [7] Bao WZ, 2005, COMMUN MATH SCI, V3, P57
  • [8] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [9] Predicted signatures of rotating Bose-Einstein condensates
    Butts, DA
    Rokhsar, DS
    [J]. NATURE, 1999, 397 (6717) : 327 - 329
  • [10] Numerical continuation for nonlinear Schrodinger equations
    Chang, S. -L.
    Chien, C. -S.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (02): : 641 - 656