MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles

被引:137
|
作者
Xie, Huaqing [1 ]
Yu, Wei [1 ]
Chen, Wei [1 ]
机构
[1] Shanghai Second Polytech Univ, Sch Urban Dev & Environm Engn, Shanghai 201209, Peoples R China
关键词
nanofluid; heat transfer; MgO nanoparticle; viscosity; thermal conductivity; BROWNIAN-MOTION; ENHANCEMENT; PARTICLES; SUSPENSIONS; CUO;
D O I
10.1080/17458081003628949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Five kinds of oxides, including MgO, TiO(2), ZnO, Al(2)O(3) and SiO(2) nanoparticles were selected as additives and ethylene glycol (EG) was used as base fluid to prepare stable nanofluids. Thermal transport property investigation demonstrated substantial increments in the thermal conductivity and viscosity of all these nanofluids with oxide nanoparticle addition in EG. Among all the studied nanofluids, MgO-EG nanofluid was found to have superior features, with the highest thermal conductivity and lowest viscosity. The thermal conductivity enhancement ratio of MgO-EG nanofluid increases nonlinearly with the volume fraction of nanoparticles. In the experimental temperature range of 10-60 degrees C, thermal conductivity enhancement ratio of MgO-EG nanofluids appears to have a weak dependence on the temperature. Viscosity measurements showed that MgO-EG nanofluids demonstrated Newtonian rheological behaviour, and the viscosity significantly decreases with the temperature. The thermal conductivity and viscosity increments of the nanofluids are much higher than the corresponding values predicted by the existing classical models for the solid-liquid mixture.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 50 条
  • [1] Thermal conductivity and viscosity of deionised water and ethylene glycol-based nanofluids
    Abdullah, A.
    Mohamad, I. S.
    Hashim, A. Y. Bani
    Abdullah, N.
    Wei, P. B.
    Isa, M. H. Md.
    Abidin, S. Zainal
    JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2016, 10 (03) : 2249 - 2261
  • [2] Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids
    Akilu, Suleiman
    Baheta, Aklilu Tesfamichael
    Kadirgama, Kumaran
    Padmanabhan, Eswaran
    Sharma, K. V.
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 284 : 780 - 792
  • [3] Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles
    Yu, Wei
    Xie, Huaqing
    Chen, Lifei
    Li, Yang
    POWDER TECHNOLOGY, 2010, 197 (03) : 218 - 221
  • [4] Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids
    Li, Xiaoke
    Zou, Changjun
    Lei, Xinyu
    Li, Wenliang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 89 : 613 - 619
  • [5] Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids
    Li, Haoran
    Wang, Li
    He, Yurong
    Hu, Yanwei
    Zhu, Jiaqi
    Jiang, Baocheng
    APPLIED THERMAL ENGINEERING, 2015, 88 : 363 - 368
  • [6] Thermophysical profile of ethylene glycol-based ZnO nanofluids
    Pastoriza-Gallego, M. J.
    Lugo, L.
    Cabaleiro, D.
    Legido, J. L.
    Pineiro, M. M.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2014, 73 : 23 - 30
  • [7] Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles
    Minakov, A., V
    Rudyak, V. Ya
    Pryazhnikov, M., I
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 554 : 279 - 285
  • [8] Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids
    Jose Pastoriza-Gallego, Maria
    Lugo, Luis
    Luis Legido, Jose
    Pineiro, Manuel M.
    NANOSCALE RESEARCH LETTERS, 2011, 6
  • [9] Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids
    Hemmat Esfe, Mohammad
    Saedodin, Seyfolah
    Asadi, Amin
    Karimipour, Arash
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 120 (02) : 1145 - 1149
  • [10] Enhancement of thermal conductivity of ethylene glycol based silver nanofluids
    Sharma, Pankaj
    Baek, Il-Hyun
    Cho, Taehyun
    Park, Sangdo
    Lee, Ki Bong
    POWDER TECHNOLOGY, 2011, 208 (01) : 7 - 19