Similarities in the circadian clock and photoperiodism in plants

被引:152
作者
Song, Young Hun [1 ]
Ito, Shogo [1 ]
Imaizumi, Takato [1 ]
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
关键词
PSEUDO-RESPONSE REGULATORS; FLOWERING-TIME; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTOR; GENE-EXPRESSION; DISTINCT ROLES; LONG-DAY; RICE; GIGANTEA; WHEAT;
D O I
10.1016/j.pbi.2010.05.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants utilize circadian clocks to synchronize their physiological and developmental events with daily and yearly changes in the environment. Recent advances in Arabidopsis research have provided a better understanding of the molecular mechanisms of the circadian clock and photoperiodism. One of the most important questions is whether the mechanisms discovered in Arabidopsis are conserved in other plant species. Through the identification of many Arabidopsis clock gene homologs and the characterization of some gene functions, a strong resemblance between the circadian clocks in plants has been observed. On the contrary, based on our recent increased knowledge of photoperiodic flowering mechanisms in cereals and other plants, the day-length sensing mechanisms appear to have diverged more between long-day plants and short-day plants.
引用
收藏
页码:594 / 603
页数:10
相关论文
共 77 条
[1]   FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].
Abe, M ;
Kobayashi, Y ;
Yamamoto, S ;
Daimon, Y ;
Yamaguchi, A ;
Ikeda, Y ;
Ichinoki, H ;
Notaguchi, M ;
Goto, K ;
Araki, T .
SCIENCE, 2005, 309 (5737) :1052-1056
[2]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[3]   Analysis of PHOTOPERIOD SENSITIVITY5 Sheds Light on the Role of Phytochromes in Photoperiodic Flowering in Rice [J].
Andres, Fernando ;
Galbraith, David W. ;
Talon, Manuel ;
Domingo, Concha .
PLANT PHYSIOLOGY, 2009, 151 (02) :681-690
[4]   F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression [J].
Baudry, Antoine ;
Ito, Shogo ;
Song, Young Hun ;
Strait, Alexander A. ;
Kiba, Takatoshi ;
Lu, Sheen ;
Henriques, Rossana ;
Pruneda-Paz, Jose L. ;
Chua, Nam-Hai ;
Tobin, Elaine M. ;
Kay, Steve A. ;
Imaizumi, Takato .
PLANT CELL, 2010, 22 (03) :606-622
[5]   A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) [J].
Beales, James ;
Turner, Adrian ;
GriYths, Simon ;
Snape, John W. ;
Laurie, David A. .
THEORETICAL AND APPLIED GENETICS, 2007, 115 (05) :721-733
[6]   CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J].
Böhlenius, H ;
Huang, T ;
Charbonnel-Campaa, L ;
Brunner, AM ;
Jansson, S ;
Strauss, SH ;
Nilsson, O .
SCIENCE, 2006, 312 (5776) :1040-1043
[7]   Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress [J].
Boxall, SF ;
Foster, JM ;
Bohnert, HJ ;
Cushman, JC ;
Nimmo, HG ;
Hartwell, J .
PLANT PHYSIOLOGY, 2005, 137 (03) :969-982
[8]   FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J].
Corbesier, Laurent ;
Vincent, Coral ;
Jang, Seonghoe ;
Fornara, Fabio ;
Fan, Qingzhi ;
Searle, Iain ;
Giakountis, Antonis ;
Farrona, Sara ;
Gissot, Lionel ;
Turnbull, Colin ;
Coupland, George .
SCIENCE, 2007, 316 (5827) :1030-1033
[9]   Clocks in the Green Lineage: Comparative Functional Analysis of the Circadian Architecture of the Picoeukaryote Ostreococcus [J].
Corellou, Florence ;
Schwartz, Christian ;
Motta, Jean-Paul ;
Djouani-Tahri, El Batoul ;
Sanchez, Frederic ;
Bouget, Francois-Yves .
PLANT CELL, 2009, 21 (11) :3436-3449
[10]   Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1l [J].
Doi, K ;
Izawa, T ;
Fuse, T ;
Yamanouchi, U ;
Kubo, T ;
Shimatani, Z ;
Yano, M ;
Yoshimura, A .
GENES & DEVELOPMENT, 2004, 18 (08) :926-936