HgTe Nanocrystal-Based Photodiode for Extended Short-Wave Infrared Sensing with Optimized Electron Extraction and Injection

被引:31
作者
Greboval, Charlie [1 ]
Izquierdo, Eva [1 ]
Abadie, Claire [1 ]
Khalili, Adrien [1 ]
Cavallo, Mariarosa [1 ]
Chu, Audrey [1 ]
Dang, Tung Huu [1 ]
Zhang, Huichen [1 ]
Lafosse, Xavier [2 ]
Rosticher, Michael [3 ]
Xu, Xiang Zhen [4 ]
Descamps-Mandine, Armel [5 ]
Ouerghi, Abdelkarim [2 ]
Silly, Mathieu G. [6 ]
Ithurria, Sandrine [4 ]
Lhuillier, Emmanuel [1 ]
机构
[1] Sorbonne Univ, Inst NanoSci Paris, INSP, CNRS, F-75005 Paris, France
[2] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[3] Univ Paris Diderot, Sorbonne Univ, Univ PSL, Lab Phys,Ecole Normale Super,ENS,CNRS, F-75005 Paris, France
[4] Univ Paris 06, PSL Res Univ, Lab Phys & Etud Mat, ESPCI Paris,Sorbonne Univ,CNRS,UMR 8213, F-75005 Paris, France
[5] Univ Toulouse, Ctr MicroCaracterisat Raimond Castaing, CNRS, UAR3623, F-31400 Toulouse, France
[6] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
关键词
Short-wave infrared; detection; HgTe; nanocrystals; photodiode; QUANTUM DOTS; SOLAR-CELLS; LAYER; ARRAY;
D O I
10.1021/acsanm.2c02103
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thanks to their narrow band gap nature and fairly high carrier mobility, HgTe nanocrystals (NCs) are of utmost interest for optoelectronics beyond the telecom window (lambda > 1.55 mu m). In particular, they offer an interesting cost-effective alternative to the well-developed InGaAs technology. However, in contrast to PbS, far less work has been dedicated to the integration of this material in photodiodes. In the short-wave infrared region, HgTe NCs have a more p-type character than in the mid-wave infrared region, thus promoting the development of new electron transport layers with an optimized band alignment. As for perovskites, HgTe NCs present a fairly deep band gap with respect to vacuum. Thus, we were motivated by the strategy developed for perovskite solar cells, for which SnO2 has led to the best performing devices. Here, we explore the following stack made of SnO2/HgTe/Ag2Te, in which the SnO2 and Ag2Te layers behave as electron and hole extractors, respectively. Using X-ray photoemission, we show that SnO2 presents a nearly optimal band alignment with HgTe to efficiently filter the hole dark current while letting the photoelectrons flow. The obtained I-V curve exhibits an increased rectifying behavior, and the diode stack presents a high internal efficiency for the diode (above 60%) and an external quantum efficiency that is mostly limited by the absorption magnitude. Furthermore, we tackle a crucial challenge for the transfer of such a diode onto readout circuits, which prevents back-side illumination. We also demonstrate that the diode stack is reversible with a partially transparent conducting electrode on the top, while preserving the device's responsivity. Finally, we show that such a SnO2 layer is also beneficial for electron injection and leads to an enhanced electroluminescence signal as the diode is operated under forward bias. This work is an essential step toward the design of a focal plane array with a HgTe NC-based photodiode.
引用
收藏
页码:8602 / 8611
页数:10
相关论文
共 53 条
[1]   Room Temperature Synthesis of HgTe Quantum Dots in an Aprotic Solvent Realizing High Photoluminescence Quantum Yields in the Infrared [J].
Abdelazim, Nema M. ;
Zhu, Qiang ;
Xiong, Yuan ;
Zhu, Ye ;
Chen, Mengyu ;
Zhao, Ni ;
Kershaw, Stephen V. ;
Rogach, Andrey L. .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7859-7867
[2]   HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection [J].
Ackerman, Matthew M. ;
Chen, Menglu ;
Guyot-Sionnest, Philippe .
APPLIED PHYSICS LETTERS, 2020, 116 (08)
[3]   Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors [J].
Ackerman, Matthew M. ;
Tang, Xin ;
Guyot-Sionnest, Philippe .
ACS NANO, 2018, 12 (07) :7264-7271
[4]   Few picosecond dynamics of intraband transitions in THz HgTe nanocrystals [J].
Apretna, Thibault ;
Massabeau, Sylvain ;
Greboval, Charlie ;
Goubet, Nicolas ;
Tignon, Jerome ;
Dhillon, Sukhdeep ;
Carosella, Francesca ;
Ferreira, Robson ;
Lhuillier, Emmanuel ;
Mangeney, Juliette .
NANOPHOTONICS, 2021, 10 (10) :2753-2763
[5]   Colloidal quantum dots for thermal infrared sensing and imaging [J].
Bin Hafiz, Shihab ;
Scimeca, Michael ;
Sahu, Ayaskanta ;
Ko, Dong-Kyun .
NANO CONVERGENCE, 2019, 6 (1)
[6]   Optimized Infrared LED and Its Use in an All-HgTe Nanocrystal-Based Active Imaging Setup [J].
Bossavit, Erwan ;
Qu, Junling ;
Abadie, Claire ;
Dabard, Corentin ;
Dang, Tung ;
Izquierdo, Eva ;
Khalili, Adrien ;
Greboval, Charlie ;
Chu, Audrey ;
Pierini, Stefano ;
Cavallo, Mariarosa ;
Prado, Yoann ;
Parahyba, Victor ;
Xu, Xiang Zhen ;
Decamps-Mandine, Armel ;
Silly, Mathieu ;
Ithurria, Sandrine ;
Lhuillier, Emmanuel .
ADVANCED OPTICAL MATERIALS, 2022, 10 (04)
[7]   MWIR Imaging With Low Cost Colloidal Quantum Dot Films [J].
Buurma, Christopher ;
Pimpinella, Richard E. ;
Ciani, Anthony J. ;
Feldman, Jered S. ;
Grein, Christoph H. ;
Guyot-Sionnest, Philippe .
OPTICAL SENSING, IMAGING, AND PHOTON COUNTING: NANOSTRUCTURED DEVICES AND APPLICATIONS 2016, 2016, 9933
[8]   Uncooled Mid-wave Infrared Focal Plane Array Using Band Gap Engineered Mercury Cadmium Telluride Quantum Dot Coated Silicon ROIC [J].
Chatterjee, Abhijit ;
Pendyala, Naresh Babu ;
Jagtap, Amardeep ;
Rao, K. S. R. Koteswara .
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2019, 17 :95-100
[9]   Correlating Structure and Detection Properties in HgTe Nanocrystal Films [J].
Chee, Sang-Soo ;
Greboval, Charlie ;
Magalhaes, Debora Vale ;
Ramade, Julien ;
Chu, Audrey ;
Qu, Junling ;
Rastogi, Prachi ;
Khalili, Adrien ;
Dang, Tung Huu ;
Dabard, Corentin ;
Prado, Yoann ;
Patriarche, Gilles ;
Chaste, Julien ;
Rosticher, Michael ;
Bals, Sara ;
Delerue, Christophe ;
Lhuillier, Emmanuel .
NANO LETTERS, 2021, 21 (10) :4145-4151
[10]   Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices [J].
Chen, Mengyu ;
Lu, Lihua ;
Yu, Hui ;
Li, Cheng ;
Zhao, Ni .
ADVANCED SCIENCE, 2021, 8 (18)