Approximate Proper Efficiency for Multiobjective Optimization Problems

被引:0
作者
Gao, Ying [1 ]
Xu, Zhihui [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
美国国家科学基金会;
关键词
Multiobjective optimization problems; Proximal normal cone; Approximate properly efficiency; Linear scalarizations; OPTIMALITY CONDITIONS; SCALARIZATION; MINIMIZATION; POINTS;
D O I
10.2298/FIL1918091G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of a new kind of approximate proper efficiency in terms of proximal normal cone and co-radiant set for multiobjective optimization problem. We derive some properties of the new approximate proper efficiency and discuss the relations with the existing approximate concepts, such as approximate efficiency and approximate Benson proper efficiency. At last, we study the linear scalarizations for the new approximate proper efficiency under the generalized convexity assumption and give some examples to illustrate the main results.
引用
收藏
页码:6091 / 6101
页数:11
相关论文
共 21 条
[1]  
Clarke F.H., 1998, Nonsmooth analysis and control theory, DOI 10.1007/b97650
[2]  
Clarke FH., 1983, OPTIMIZATION NONSMOO
[3]   Cone characterizations of approximate solutions in real vector optimization [J].
Engau, A. ;
Wiecek, M. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 134 (03) :499-513
[4]   SUFFICIENT CONDITIONS FOR GLOBAL MINIMA OF SUITABLY CONVEX FUNCTIONALS FROM VARIATIONAL AND CONTROL-THEORY [J].
EWING, GM .
SIAM REVIEW, 1977, 19 (02) :202-220
[5]   Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems [J].
Gao, Y. ;
Hou, S. H. ;
Yang, X. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (01) :97-120
[6]   OPTIMALITY CONDITIONS FOR APPROXIMATE SOLUTIONS OF VECTOR OPTIMIZATION PROBLEMS [J].
Gao, Ying ;
Yang, Xinmin ;
Teo, Kok Lay .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (02) :483-496
[7]   Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization [J].
Ghaznavi-Ghosoni, B. A. ;
Khorram, E. ;
Soleimani-damaneh, M. .
OPTIMIZATION, 2013, 62 (06) :703-720
[8]   Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems [J].
Gutierrez, C. ;
Huerga, L. ;
Novo, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) :1046-1058
[9]   Unified approach and optimality conditions for approximate solutions of vector optimization problems [J].
Gutierrez, Cesar ;
Jimenez, Bienvenido ;
Novo, Vicente .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) :688-710
[10]  
HELBIG S, 1994, OR SPEKTRUM, V16, P179, DOI 10.1007/BF01720705