Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach

被引:8
|
作者
Jiang, Guoqian [1 ]
Zhao, Jingyi [1 ]
Jia, Chenling [1 ]
He, Qun [1 ]
Xie, Ping [1 ]
Meng, Zong [1 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国博士后科学基金;
关键词
wind turbines; gearbox; fault diagnosis; multi-modal deep learning; information fusion; FUSION; AUTOENCODER;
D O I
10.1109/phm-qingdao46334.2019.8942903
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a new intelligent fault diagnosis approach based on multimodal deep learning to fuse vibration and current signals to diagnose wind turbine gearbox faults. The proposed method typically consists of modality-specific feature learning network and feature fusion network, specifically based on a popular deep learning model named deep belief networks (DBNs). First, two individual DBNs are designed to learn fault-related features directly from raw vibration signals and current signals, respectively. Then, the learned vibration-based features and current-based features are further fused by a third DBN to output the final diagnosis results. The proposed approach is verified on a wind turbine drivetrain gearbox test rig. The experimental results demonstrate that the proposed approach outperformed the compared methods based on single sensor and data-level fusion in terms of diagnostic accuracy, which attributes to the complementary diagnosis information from vibration signals and current signals.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On fault diagnosis using image-based deep learning networks based on vibration signals
    Ren, Zhenxing
    Guo, Jianfeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44555 - 44580
  • [22] Vibration-based gearbox fault diagnosis using deep neural networks
    Chen, Zhiqiang
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    JOURNAL OF VIBROENGINEERING, 2017, 19 (04) : 2475 - 2496
  • [23] Performance of vibration and current signals in the fault diagnosis of induction motors using deep learning and machine learning techniques
    Ayankoso, Samuel
    Dutta, Ananta
    He, Yinghang
    Gu, Fengshou
    Ball, Andrew
    Pal, Surjya K.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [24] Drivetrain Gearbox Fault Diagnosis VIBRATION- AND CURRENT-BASED APPROACHES
    Jin, Xiaohang
    Cheng, Fangzhou
    Peng, Yayu
    Qiao, Wei
    Qu, Liyan
    IEEE INDUSTRY APPLICATIONS MAGAZINE, 2018, 24 (06) : 56 - 66
  • [25] Fault Diagnosis Model for Accessory Gearbox Based on Deep Transfer Learning
    Xiao, Bowen
    Yuan, Yunbo
    Sun, Ximing
    Ma, Song
    Zhao, Guang
    Wang, Feiming
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 446 - 451
  • [26] Gearbox Fault Diagnosis Using Vibration and Current Information Fusion
    Peng, Yayu
    Qiao, Wei
    Qu, Liyan
    Wang, Jun
    2016 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2016,
  • [27] A Deep Learning Approach for Rolling Bearing Intelligent Fault Diagnosis
    Tan, Fusheng
    Mo, Mingqiao
    Li, Haonan
    Han, Xuefeng
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 364 - 369
  • [28] Intelligent fault diagnosis for the planetary gearbox based on the deep wide convolution Q network
    Wang H.
    Xu J.
    Yan R.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (03): : 109 - 120
  • [29] Fault diagnosis of planetary gearbox based on acoustic signals
    Yao, Jiachi
    Liu, Chao
    Song, Keyu
    Feng, Chenlong
    Jiang, Dongxiang
    APPLIED ACOUSTICS, 2021, 181
  • [30] Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
    Li, Chuan
    Sanchez, Rene-Vinicio
    Zurita, Grover
    Cerrada, Mariela
    Cabrera, Diego
    Vasquez, Rafael E.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 76-77 : 283 - 293