Spatial control over cell attachment by partial solvent entrapment of poly lysine in microfluidic channels

被引:5
作者
Baman, Nicki K. [2 ]
Schneider, Galen B. [3 ,4 ]
Terry, Treniece L. [5 ]
Zaharias, Rebecca [3 ,4 ]
Salem, Aliasger K. [1 ,2 ,5 ]
机构
[1] Univ Iowa, Coll Pharm, Div Pharmaceut, Iowa City, IA 52242 USA
[2] Univ Iowa, Coll Engn, Dept Biomed Engn, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Prosthodont, Coll Dent, Iowa City, IA 52242 USA
[4] Univ Iowa, Dows Inst Dent Res, Coll Dent, Iowa City, IA 52242 USA
[5] Univ Iowa, Coll Engn, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA
关键词
microfluidic; cell binding; tissue engineering; solvent entrapment;
D O I
10.2147/nano.2006.1.2.213
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate spatial control over cell attachment on biodegradable surfaces by flowing cell adhesive poly (D-lysine) (PDL) in a trifluoroethanol (TFE)-water mixture through microfluidic channels placed on a biodegradable poly (lactic acid)-poly (ethylene glycol) (PLA-PEG) substrate. The partial solvent mixture swells the PLA-PEG within the confines of the microfluidic channels allowing PDL to diffuse on to the surface gel layer. When excess water is flowed through the channels substituting the TFE-water mixture, the swollen PLA surface collapses, entrapping PDL polymer. Results using preosteoblast human palatal mesenchymal cells (HEPM) indicate that this new procedure can be used for facile attachment of cells in localized regions. The PEG component of the PLA-PEG copolymer prevents cells from binding to the nonpatterned regions.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 25 条
[1]   Microfabrication of hepatocyte/fibroblast co-cultures: Role of homotypic cell interactions [J].
Bhatia, SN ;
Balis, UJ ;
Yarmush, ML ;
Toner, M .
BIOTECHNOLOGY PROGRESS, 1998, 14 (03) :378-387
[2]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[3]   Patterned delivery of immunoglobulins to surfaces using microfluidic networks [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Michel, B ;
Biebuyck, H .
SCIENCE, 1997, 276 (5313) :779-781
[4]   SURFACE PHYSICAL INTERPENETRATING NETWORKS OF POLY(ETHYLENE-TEREPHTHALATE) AND POLY(ETHYLENE OXIDE) WITH BIOMEDICAL APPLICATIONS [J].
DESAI, NP ;
HUBBELL, JA .
MACROMOLECULES, 1992, 25 (01) :226-232
[5]   SOLUTION TECHNIQUE TO INCORPORATE POLYETHYLENE OXIDE AND OTHER WATER-SOLUBLE POLYMERS INTO SURFACES OF POLYMERIC BIOMATERIALS [J].
DESAI, NP ;
HUBBELL, JA .
BIOMATERIALS, 1991, 12 (02) :144-153
[6]   An extracellular matrix microarray for probing cellular differentiation [J].
Flaim, CJ ;
Chien, S ;
Bhatia, SN .
NATURE METHODS, 2005, 2 (02) :119-125
[7]   Universal route to cell micropatterning using an amphiphilic comb polymer [J].
Hyun, JH ;
Ma, HW ;
Zhang, ZP ;
Beebe, TP ;
Chilkoti, A .
ADVANCED MATERIALS, 2003, 15 (7-8) :576-579
[8]   Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates [J].
Ke, K ;
Hasselbrink, EF ;
Hunt, AJ .
ANALYTICAL CHEMISTRY, 2005, 77 (16) :5083-5088
[9]   Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices [J].
Lee, JN ;
Park, C ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2003, 75 (23) :6544-6554
[10]   Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide) [J].
Lin, CC ;
Co, CC ;
Ho, CC .
BIOMATERIALS, 2005, 26 (17) :3655-3662