Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4•0.8H2O anode in lithium ion batteries

被引:18
作者
Fei, Jie [1 ]
Sun, Qianqian [1 ]
Cui, Yali [1 ]
Li, Jiayin [1 ]
Huang, Jianfeng [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Shaanxi, Peoples R China
关键词
ZnMoO4 center dot 0.8H(2)O; Lithium ion battery; Binder; Carboxyl methyl cellulose; Polyacrylic acid; HIGH-PERFORMANCE ANODE; WATER-SOLUBLE BINDER; GRAPHITE ANODE; NEGATIVE ELECTRODES; CATHODE; NANOSHEETS; NANORODS; NETWORK; MNMOO4; NI;
D O I
10.1016/j.jelechem.2017.09.061
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
ZnMoO4 center dot 0.8H(2)O nanorods as anode materials for lithium ion batteries are obtained through facile aqueous solution method. The electrochemical properties of ZnMoO4 center dot 0.8H(2)O have been investigated for the first time with the mixture of sodium carboxyl methyl cellulose and polyacrylic acid (CMC/PAA) as binder. The experiments show that the CMC/PAA binder significandy improves the cycling performance and rate capability of ZnMoO4 center dot 0.8H(2)O compared with the conventional polyvinylidene-fluoride (PVDF) and CMC. The electrode of ZnMoO4 center dot 0.8H(2)O with CMC/PAA displays a stable reversible discharge capacity of 479 mA h g(-1) at 100 mA g(-1), a capacity fading rate of 0.7% per cycle to the second cycle and a higher initial coulombic efficiency of 89%. A capacity of 435 mA h g(-1) at 100 mA g(-1) can recover after 50cycles even following the discharge/charge process with the high current density of 500 mA g(-1) In addition, the CMC/PAA binder lowers Ohmic resistance and increase the lithium diffusion coefficient. All these advantages highlight the application of CMC/PAA binder used in ZnMoO4 center dot 0.8H(2)O.
引用
收藏
页码:158 / 164
页数:7
相关论文
共 37 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Special Section: Electrochemical capacitors: Guest Editor's note [J].
Balducci, Andrea .
JOURNAL OF POWER SOURCES, 2016, 326 :533-533
[3]   Energy storage beyond the horizon: Rechargeable lithium batteries [J].
Bruce, Peter G. .
SOLID STATE IONICS, 2008, 179 (21-26) :752-760
[4]   Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder [J].
Cai, Z. P. ;
Liang, Y. ;
Li, W. S. ;
Xing, L. D. ;
Liao, Y. H. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :547-551
[5]   MnMoO4•4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties [J].
Cao, Yunjiu ;
Li, Wenyao ;
Xu, Kaibing ;
Zhang, Yuxin ;
Ji, Tao ;
Zou, Rujia ;
Yang, Jianmao ;
Qin, Zongyi ;
Hu, Junqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) :20723-20728
[6]   Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries [J].
Chai, Lili ;
Qu, Qunting ;
Zhang, Longfei ;
Shen, Ming ;
Zhang, Li ;
Zheng, Honghe .
ELECTROCHIMICA ACTA, 2013, 105 :378-383
[7]   SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance [J].
Cheng, Yayi ;
Huang, Jianfeng ;
Li, Jiayin ;
Xu, Zhanwei ;
Cao, Liyun ;
Ouyang, Haibo ;
Yan, Jingwen ;
Qi, Hui .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 658 :234-240
[8]   Interconnected Network of CoMoO4 Submicrometer Particles As High Capacity Anode Material for Lithium Ion Batteries [J].
Cherian, Christie T. ;
Reddy, M. V. ;
Haur, Sow Chorng ;
Chowdari, B. V. R. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) :918-923
[9]   General synthesis and phase control of metal molybdate hydrates MMoO4•nH2O (M = Co, Ni, Mn, n=0, 3/4, 1) nano/microcrystals by a hydrothermal approach:: Magnetic, photocatalytic, and electrochemical properties [J].
Ding, Yi ;
Wan, Yong ;
Min, Yu-Lin ;
Zhang, Wei ;
Yu, Shu-Hong .
INORGANIC CHEMISTRY, 2008, 47 (17) :7813-7823
[10]   Surface film formation on a carbonaceous electrode: Influence of the binder chemistry [J].
El Ouatani, L. ;
Dedryvere, R. ;
Ledeuil, J-B ;
Siret, C. ;
Biensan, P. ;
Desbrieres, J. ;
Gonbeau, D. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :72-80