Super-simple designs with v≤32

被引:29
作者
Bluskov, I
Heinrich, K
机构
[1] Univ No British Columbia, Dept Math & Comp Sci, Prince George, BC V2N 4Z9, Canada
[2] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
combinatorial design; extremal combinatorics;
D O I
10.1016/S0378-3758(00)00282-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A t-(v, k, lambda) design D = (X, B) is a collection B = {B-1, B-2,..., B-b} of k-subsets (called blocks) of a v-set X (with elements called points) such that every t-subset of X is contained in precisely lambda blocks. Let p(D) = max (1 less than or equal to i < j <less than or equal to> b) \B(i)boolean ANDB(j)\. Let p* = p*(t, v; k, lambda) = mine(D) p(D), where D is a t-(v, k, lambda) design. A super-simple t-(v, k, lambda) design D is one with p(D) = p*. In this paper we survey known results and present some new super-simple 2-(v,4,lambda) designs for v less than or equal to 32. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 16 条
  • [1] Adams P., 1996, AEQUATIONES MATH, V52, P230, DOI DOI 10.1007/BF01833280
  • [2] Bluskov I, 1998, J COMB DES, V6, P21, DOI 10.1002/(SICI)1520-6610(1998)6:1<21::AID-JCD2>3.0.CO
  • [3] 2-Y
  • [4] Bluskov I, 1996, UTILITAS MATHEMATICA, V50, P203
  • [5] BLUSKOV I, 1995, UTILITAS MATHEMATICA, V48, P193
  • [6] Bluskov I., 1997, J COMBIN MATH COMBIN, V23, P212
  • [7] Gronau HOF., 1992, J. Comb. Math. Comb. Comput, V11, P113
  • [8] BALANCED INCOMPLETE BLOCK DESIGNS AND RELATED DESIGNS
    HANANI, H
    [J]. DISCRETE MATHEMATICS, 1975, 11 (3-4) : 255 - 369
  • [9] Hanani H., 1960, Canadian Journal of Mathematics, V12, P145
  • [10] Hartman A., 1979, LECT NOTES MATH, V829, P157