Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism

被引:129
作者
Shogomori, H [1 ]
Futerman, AH [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
关键词
D O I
10.1074/jbc.M009414200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A number of studies have demonstrated that cholera toxin (CT) is found in detergent-insoluble, cholesterol-enriched domains (rafts) in various cells, including neurons. We now demonstrate that even though CT is associated with these domains at the cell surface of cultured hippocampal neurons, it is internalized via a raft-independent mechanism, at both early and late stages of neuronal development. CT transport to the Golgi apparatus, and its subsequent degradation, is inhibited by hypertonic medium (sucrose), and by chlorpromazine; the former blocks clathrin recruitment, and the latter causes aberrant endosomal accumulation of clathrin. Moreover, both internalization of the transferrin receptor (Tf-R), which occurs via a clathrin-dependent mechanism, and CT internalization, are inhibited to a similar extent by sucrose. In contrast, the cholesterol-binding agents filipin and methyl-beta -cyclodextrin have no effect on the rate of CT or Tf-R internalization. Finally, once internalized, CT becomes more detergent-soluble, and chlorpromazine treatment renders internalized CT completely detergent-soluble. We propose two models to explain how, despite being detergent-insoluble at the cell surface, CT is nevertheless internalized via a raft-independent mechanism in hippocampal neurons.
引用
收藏
页码:9182 / 9188
页数:7
相关论文
共 50 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]   Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor - Evidence for post-translational modification of glucosylceramide synthase [J].
Boldin, SA ;
Futerman, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) :9905-9909
[3]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[4]   The role of selective transport in neuronal protein sorting [J].
Burack, MA ;
Silverman, MA ;
Banker, G .
NEURON, 2000, 26 (02) :465-472
[5]   NEURONAL POLARITY [J].
CRAIG, AM ;
BANKER, G .
ANNUAL REVIEW OF NEUROSCIENCE, 1994, 17 :267-310
[6]   PH AND THE RECYCLING OF TRANSFERRIN DURING RECEPTOR-MEDIATED ENDOCYTOSIS [J].
DAUTRYVARSAT, A ;
CIECHANOVER, A ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (08) :2258-2262
[7]  
FRA AM, 1994, J BIOL CHEM, V269, P30745
[8]   Microdomains of GPI-anchored proteins in living cells revealed by crosslinking [J].
Friedrichson, T ;
Kurzchalia, TV .
NATURE, 1998, 394 (6695) :802-805
[9]   The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components [J].
Gagescu, R ;
Demaurex, N ;
Parton, RG ;
Hunziker, W ;
Huber, LA ;
Gruenberg, J .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (08) :2775-2791
[10]  
Goslin K., 1998, CULTURING NERVE CELL, P339