Pseudomonas aeruginosa biofilms in cystic fibrosis

被引:167
|
作者
Hoiby, Niels [1 ]
Ciofu, Oana [2 ]
Bjarnsholt, Thomas [1 ]
机构
[1] Univ Copenhagen, Rigshosp, Dept Clin Microbiol 9301, DK-2200 Copenhagen, Denmark
[2] Univ Copenhagen, Fac Hlth Sci, Dept Int Hlth Immunol & Microbiol ISIM, Div Bacteriol, DK-2200 Copenhagen N, Denmark
关键词
antibiotic tolerance; biofilm; chronic infection; cystic fibrosis; Pseudomonas aeruginosa; CHRONIC LUNG INFECTION; CHROMOSOMAL BETA-LACTAMASE; LOWER AIRWAY INFLAMMATION; INHALED TOBRAMYCIN; POLYMORPHONUCLEAR LEUKOCYTES; ANTIBIOTIC-RESISTANCE; YOUNG-CHILDREN; IN-VITRO; AMINOGLYCOSIDE-RESISTANCE; CEFTAZIDIME TREATMENT;
D O I
10.2217/FMB.10.125
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. In CF lungs, the polysaccharide alginate is the major part of the P. aeruginosa biofilm matrix. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and resist phagocytosis, as well as other components of the innate and the adaptive immune system. As a consequence, a pronounced antibody response develops, leading to immune complex-mediated chronic inflammation, dominated by polymorphonuclear leukocytes. The chronic inflammation is the major cause of the lung tissue damage in CF. Biofilm growth in CF lungs is associated with an increased frequency of mutations, slow growth and adaptation of the bacteria to the conditions in the lungs, and to antibiotic therapy. Low bacterial metabolic activity and increase of doubling times of the bacterial cells in CF lungs are responsible for some of the tolerance to antibiotics. Conventional resistance mechanisms, such as chromosomal beta-lactamase, upregulated efflux pumps, and mutations of antibiotic target molecules in the bacteria, also contribute to the survival of P. aeruglnosa biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy, and they can be treated by chronic suppressive therapy.
引用
收藏
页码:1663 / 1674
页数:12
相关论文
共 50 条
  • [21] MICROBIOLOGICAL FEATURES OF PSEUDOMONAS AERUGINOSA IN CHILDREN WITH CYSTIC FIBROSIS
    Ishchenko, O., V
    Stepanskyi, D. O.
    MEDICNI PERSPEKTIVI, 2021, 26 (03): : 131 - 138
  • [22] Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients
    Murray, Thomas S.
    Egan, Marie
    Kazmierczak, Barbara I.
    CURRENT OPINION IN PEDIATRICS, 2007, 19 (01) : 83 - 88
  • [23] Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection
    Guillaume, Olivier
    Butnarasu, Cosmin
    Visentin, Sonja
    Reimhult, Erik
    BIOFILM, 2022, 4
  • [24] Competition in Biofilms between Cystic Fibrosis Isolates of Pseudomonas aeruginosa Is Shaped by R-Pyocins
    Oluyombo, Olubukola
    Penfold, Christopher N.
    Diggle, Stephen P.
    MBIO, 2019, 10 (01):
  • [25] The role of Psl in the failure to eradicate Pseudomonas aeruginosa biofilms in children with cystic fibrosis
    Morris, Amanda J.
    Jackson, Lindsay
    Yau, Yvonne C. W.
    Reichhardt, Courtney
    Beaudoin, Trevor
    Uwumarenogie, Stephanie
    Guttman, Kevin M.
    Howell, P. Lynne
    Parsek, Matthew R.
    Hoffman, Lucas R.
    Dao Nguyen
    DiGiandomenico, Antonio
    Guttman, David S.
    Wozniak, Daniel J.
    Waters, Valerie J.
    NPJ BIOFILMS AND MICROBIOMES, 2021, 7 (01)
  • [26] Conditions Associated with the Cystic Fibrosis Defect Promote Chronic Pseudomonas aeruginosa Infection
    Staudinger, Benjamin J.
    Muller, Jocelyn Fraga
    Halldorsson, Skarpheoinn
    Boles, Blaise
    Angermeyer, Angus
    Dao Nguyen
    Rosen, Henry
    Baldursson, Olafur
    Gottfreosson, Magnus
    Guomundsson, Guomundur Hrafn
    Singh, Pradeep K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189 (07) : 812 - 824
  • [27] Mathematical modelling of Pseudomonas aeruginosa biofilm growth and treatment in the cystic fibrosis lung
    Miller, J. K.
    Brantner, Justin S.
    Clemons, Curtis
    Kreider, K. L.
    Milsted, Amy
    Wilber, Pat
    Yun, Yang H.
    Youngs, Wiley J.
    Young, Gerald
    Badawy, Hope T.
    Milsted, Amy
    Clemons, Curtis
    Kreider, K. L.
    Wilber, Pat
    Young, Gerald
    Yun, Yang H.
    Wagers, Patrick O.
    Youngs, Wiley J.
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2014, 31 (02): : 179 - 204
  • [28] Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia
    Rees, Vanessa E.
    Lucas, Deanna S. Deveson
    Lopez-Causape, Carla
    Huang, Yuling
    Kotsimbos, Tom
    Bulitta, Jurgen B.
    Rees, Murray C.
    Barugahare, Adele
    Peleg, Anton Y.
    Nation, Roger L.
    Oliver, Antonio
    Boyce, John D.
    Landersdorfer, Cornelia B.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2019, 63 (04)
  • [29] Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis
    Cramer, Nina
    Wiehlmann, Lutz
    Tuemmler, Burkhard
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2010, 300 (08) : 526 - 533
  • [30] Serratiopeptidase Affects the Physiology of Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients
    Artini, Marco
    Vrenna, Gianluca
    Trecca, Marika
    Assanti, Vanessa Tuccio Guarna
    Fiscarelli, Ersilia Vita
    Papa, Rosanna
    Selan, Laura
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)