A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM

被引:12
作者
Bernardi, Christine [1 ,2 ]
Dakroub, Jad [1 ,2 ,3 ]
Mansour, Gihane [3 ]
Sayah, Toni [3 ]
机构
[1] CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ St Joseph, Fac Sci, Unite Rech EGFEM, Beirut, Lebanon
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 04期
关键词
A posteriori error estimation; Navier-Stokes problem; iterative method; FINITE-ELEMENT APPROXIMATIONS; NONLINEAR PROBLEMS; ERROR ESTIMATION; EQUATIONS; FLOW;
D O I
10.1051/m2an/2015062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [41] A posteriori error estimation and adaptivity based on VMS for the incompressible Navier-Stokes equations
    Irisarri, Diego
    Hauke, Guillermo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [42] On the Navier-Stokes Problem in Exterior Domains with Non Decaying Initial Data
    Galdi, Giovanni P.
    Maremonti, Paolo
    Zhou, Yong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (04) : 633 - 652
  • [43] Collocated inite-volume method for the incompressible Navier-Stokes problem
    Terekhov, Kirill M.
    JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (01) : 63 - 79
  • [44] VIRTUAL ELEMENTS FOR THE NAVIER-STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, L. Beirao
    Lovadina, C.
    Vacca, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1210 - 1242
  • [45] Finite Elements for the Navier-Stokes Problem with Outflow Condition
    Arndt, Daniel
    Braack, Malte
    Lube, Gert
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 95 - 103
  • [46] Geometry of turbulent dissipation and the Navier-Stokes regularity problem
    Rafner, Janet
    Grujic, Zoran
    Bach, Christian
    Baerentzen, Jakob Andreas
    Gervang, Bo
    Jia, Ruo
    Leinweber, Scott
    Misztal, Marek
    Sherson, Jacob
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [47] Shape identification for Navier-Stokes problem using shape sensitivity analysis and level set method
    Duan, Xian-Bao
    He, Nan-Nan
    Qin, Xin-Qiang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 231 : 1 - 8
  • [48] Partial regularity of solution to generalized Navier-Stokes problem
    Macha, Vaclav
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1460 - 1483
  • [49] On the existence of singular solutions of the stationary Navier-Stokes problem
    Russo, Antonio
    Tartaglione, Alfonsina
    LITHUANIAN MATHEMATICAL JOURNAL, 2013, 53 (04) : 423 - 437