A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM

被引:12
作者
Bernardi, Christine [1 ,2 ]
Dakroub, Jad [1 ,2 ,3 ]
Mansour, Gihane [3 ]
Sayah, Toni [3 ]
机构
[1] CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ St Joseph, Fac Sci, Unite Rech EGFEM, Beirut, Lebanon
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 04期
关键词
A posteriori error estimation; Navier-Stokes problem; iterative method; FINITE-ELEMENT APPROXIMATIONS; NONLINEAR PROBLEMS; ERROR ESTIMATION; EQUATIONS; FLOW;
D O I
10.1051/m2an/2015062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [31] Symmetry Problems.The Navier-Stokes Problem
    Ramm A.G.
    Synthesis Lectures on Mathematics and Statistics, 2019, 11 (01): : 1 - 85
  • [32] A Viscosity-Splitting Method for the Navier-Stokes/ Darcy Problem
    Wang, Yunxia
    Han, Xuefeng
    Si, Zhiyong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (01) : 251 - 277
  • [33] The Navier-Stokes problem modified by an absorption term
    Antontsev, S. N.
    de Oliveira, H. B.
    APPLICABLE ANALYSIS, 2010, 89 (12) : 1805 - 1825
  • [34] Nonlocal Navier-Stokes problem with a small parameter
    Shakhmurov, Veli B.
    BOUNDARY VALUE PROBLEMS, 2013,
  • [35] Spectral discretization of the Navier-Stokes problem with mixed boundary conditions
    Daikh, Yasmina
    Yakoubi, Driss
    APPLIED NUMERICAL MATHEMATICS, 2017, 118 : 33 - 49
  • [36] Asymptotic Criticality of the Navier-Stokes Regularity Problem
    Grujic, Zoran
    Xu, Liaosha
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (03)
  • [37] MOOSE Navier-Stokes module
    Lindsay, Alexander
    Giudicelli, Guillaume
    German, Peter
    Peterson, John
    Wang, Yaqi
    Freile, Ramiro
    Andrs, David
    Balestra, Paolo
    Tano, Mauricio
    Hu, Rui
    Zou, Ling
    Gaston, Derek
    Permann, Cody
    Schunert, Sebastian
    SOFTWAREX, 2023, 23
  • [38] Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations
    Shang, Yueqiang
    He, Yinnian
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (07) : 719 - 737
  • [39] Parallel iterative stabilized finite element algorithms for the Navier-Stokes equations with nonlinear slip boundary conditions
    Zhou, Kangrui
    Shang, Yueqiang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (04) : 1074 - 1109
  • [40] Variational multiscale a posteriori error estimation for systems: The Euler and Navier-Stokes equations
    Hauke, Guillermo
    Fuster, Daniel
    Lizarraga, Fernando
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1493 - 1524