A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM

被引:12
|
作者
Bernardi, Christine [1 ,2 ]
Dakroub, Jad [1 ,2 ,3 ]
Mansour, Gihane [3 ]
Sayah, Toni [3 ]
机构
[1] CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ St Joseph, Fac Sci, Unite Rech EGFEM, Beirut, Lebanon
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 04期
关键词
A posteriori error estimation; Navier-Stokes problem; iterative method; FINITE-ELEMENT APPROXIMATIONS; NONLINEAR PROBLEMS; ERROR ESTIMATION; EQUATIONS; FLOW;
D O I
10.1051/m2an/2015062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [21] The flux problem for the Navier-Stokes equations
    Korobkov, M. V.
    Pileckas, K.
    Pukhnachev, V. V.
    Russo, R.
    RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (06) : 1065 - 1122
  • [22] An a posteriori error estimator for a LPS method for Navier-Stokes equations
    Araya, Rodolfo
    Rebolledo, Ramiro
    APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 179 - 195
  • [23] Reflections on the evolution of implicit Navier-Stokes algorithms
    Briley, W. Roger
    McDonald, Henry
    COMPUTERS & FLUIDS, 2011, 41 (01) : 15 - 19
  • [24] INERTIAL ALGORITHMS FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    侯延仁
    R.M.M.Mattheij
    ActaMathematicaScientia, 2003, (02) : 219 - 238
  • [25] Inertial algorithms for the stationary Navier-Stokes equations
    Hou, YR
    Mattheij, RMM
    ACTA MATHEMATICA SCIENTIA, 2003, 23 (02) : 219 - 238
  • [26] Preconditioned iterative methods for Navier-Stokes control problems
    Pearson, John W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 292 : 194 - 207
  • [27] Numerical analysis of the Navier-Stokes/Darcy coupling
    Badea, Lori
    Discacciati, Marco
    Quarteroni, Alfio
    NUMERISCHE MATHEMATIK, 2010, 115 (02) : 195 - 227
  • [28] A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations
    Meidner, Dominik
    Richter, Thomas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 288 : 45 - 59
  • [29] A posteriori error estimates for the large eddy simulation applied to stationary Navier-Stokes equations
    Nassreddine, Ghina
    Omnes, Pascal
    Sayah, Toni
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1468 - 1498
  • [30] A canonical Hamiltonian formulation of the Navier-Stokes problem
    Sanders, John W.
    Devoria, A. C.
    Washuta, Nathan J.
    Elamin, Gafar A.
    Skenes, Kevin L.
    Berlinghieri, Joel C.
    JOURNAL OF FLUID MECHANICS, 2024, 984