A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM

被引:12
|
作者
Bernardi, Christine [1 ,2 ]
Dakroub, Jad [1 ,2 ,3 ]
Mansour, Gihane [3 ]
Sayah, Toni [3 ]
机构
[1] CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ St Joseph, Fac Sci, Unite Rech EGFEM, Beirut, Lebanon
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 04期
关键词
A posteriori error estimation; Navier-Stokes problem; iterative method; FINITE-ELEMENT APPROXIMATIONS; NONLINEAR PROBLEMS; ERROR ESTIMATION; EQUATIONS; FLOW;
D O I
10.1051/m2an/2015062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a posteriori error estimates for the Navier-Stokes equations. We propose a finite element discretization relying on the Galerkin method and we solve the discrete problem using an iterative method. Two sources of error appear, the discretization error and the linearization error. Balancing these two errors is very important to avoid performing an excessive number of iterations. Several numerical tests are provided to evaluate the efficiency of our indicators.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [1] A posteriori analysis of the Newton method applied to the Navier-Stokes problem
    Dakroub, Jad
    Faddoul, Joanna
    Sayah, Toni
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 63 (1-2) : 411 - 437
  • [2] A posteriori analysis of iterative algorithms for a nonlinear problem
    Christine Bernardi
    Jad Dakroub
    Gihane Mansour
    Toni Sayah
    Journal of Scientific Computing, 2015, 65 : 672 - 697
  • [3] A Priori and A Posteriori Error Estimations for the Dual Mixed Finite Element Method of the Navier-Stokes Problem
    Farhloul, M.
    Nicaise, S.
    Paquet, L.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 843 - 869
  • [4] A posteriori analysis of iterative algorithms for a nonlinear problem
    Bernardi, Christine
    Dakroub, Jad
    Mansour, Gihane
    Sayah, Toni
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (02) : 672 - 697
  • [5] A posteriori error analysis for solving the Navier-Stokes problem and convection-diffusion equation
    Agroum, Rahma
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (02) : 401 - 418
  • [6] A posteriori error estimation for Navier-Stokes equations
    Elakkad, A.
    Guessous, N.
    Elkhalfi, A.
    NEW ASPECTS OF FLUID MECHANICS, HEAT TRANSFER AND ENVIRONMENT, 2010, : 50 - 60
  • [7] Local and parallel finite element algorithms for the Navier-Stokes problem
    He, YN
    Xu, JC
    Zhou, AH
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 227 - 238
  • [8] Analysis of the coupled Navier-Stokes/Biot problem
    Cesmelioglu, Aycil
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) : 970 - 991
  • [9] A posteriori analysis of the Newton method applied to the Navier–Stokes problem
    Jad Dakroub
    Joanna Faddoul
    Toni Sayah
    Journal of Applied Mathematics and Computing, 2020, 63 : 411 - 437
  • [10] Comments on the Navier-Stokes Problem
    Ramm, Alexander G.
    AXIOMS, 2021, 10 (02)