Infrared micro-spectroscopy coupled with multivariate and machine learning techniques for cancer classification in tissue: a comparison of classification method, performance, and pre-processing technique

被引:17
作者
Ferguson, Dougal [1 ,2 ]
Henderson, Alex [1 ,2 ]
McInnes, Elizabeth F. [3 ]
Lind, Rob [3 ]
Wildenhain, Jan [3 ]
Gardner, Peter [1 ,2 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, 131 Princess St, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Engn, Dept Chem Engn & Analyt Sci, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] Int Res Ctr, Syngenta, Jealotts Hill, Bracknell RG42 6EY, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
SPECTRAL HISTOPATHOLOGY; PRIMARY MELANOMAS; LUNG; SUBTYPES; CELLS;
D O I
10.1039/d2an00775d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The visual detection, classification, and differentiation of cancers within tissues of clinical patients is an extremely difficult and time-consuming process with severe diagnosis implications. To this end, many computational approaches have been developed to analyse tissue samples to supplement histological cancer diagnoses. One approach is the interrogation of the chemical composition of the actual tissue samples through the utilisation of vibrational spectroscopy, specifically Infrared (IR) spectroscopy. Cancerous tissue can be detected by analysing the molecular vibration patterns of tissues undergoing IR irradiation, and even graded, with multivariate and Machine Learning (ML) techniques. This publication serves to review and highlight the potential for the application of infrared microscopy techniques such as Fourier Transform Infrared Spectroscopy (FTIR) and Quantum Cascade Laser Infrared Spectroscopy (QCL), as a means to improve diagnostic accuracy and allow earlier detection of human neoplastic disease. This review provides an overview of the detection and classification of different cancerous tissues using FTIR spectroscopy paired with multivariate and ML techniques, using the F1-Score as a quantitative metric for direct comparison of model performances. Comparisons also extend to data handling techniques, with a provision of a suggested pre-processing protocol for future studies alongside suggestions as to reporting standards for future publication.
引用
收藏
页码:3709 / 3722
页数:14
相关论文
共 64 条
[11]   Resonant Mie scattering in infrared spectroscopy of biological materials - understanding the 'dispersion artefact' [J].
Bassan, Paul ;
Byrne, Hugh J. ;
Bonnier, Franck ;
Lee, Joe ;
Dumas, Paul ;
Gardner, Peter .
ANALYST, 2009, 134 (08) :1586-1593
[12]   Deep learning for FTIR histology: leveraging spatial and spectral features with convolutional neural networks [J].
Berisha, Sebastian ;
Lotfollahi, Mahsa ;
Jahanipour, Jahandar ;
Gurcan, Ilker ;
Walsh, Michael ;
Bhargava, Rohit ;
Hien Van Nguyen ;
Mayerich, David .
ANALYST, 2019, 144 (05) :1642-1653
[13]   Processing FT-IR imaging data for morphology visualization [J].
Bhargava, R ;
Wang, SQ ;
Koenig, JL .
APPLIED SPECTROSCOPY, 2000, 54 (11) :1690-1706
[14]   Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer [J].
Bird, Benjamin ;
Miljkovic, Milos ;
Remiszewski, Stan ;
Akalin, Ali ;
Kon, Mark ;
Diem, Max .
LABORATORY INVESTIGATION, 2012, 92 (09) :1358-1373
[15]   Noise reduction in Raman spectra:: Finite impulse response filtration versus Savitzky-Golay smoothing [J].
Clupek, Martin ;
Matejka, Pavel ;
Volka, Karel .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (09) :1174-1179
[16]   Interobserver Agreement Among Pathologists for Semiquantitative Hormone Receptor Scoring in Breast Carcinoma [J].
Cohen, David A. ;
Dabbs, David J. ;
Cooper, Kristine L. ;
Amin, Milon ;
Jones, Terrell E. ;
Jones, Mirka W. ;
Chivukula, Mamatha ;
Trucco, Giuliana A. ;
Bhargava, Rohit .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2012, 138 (06) :796-802
[17]   Concordance Among Pathologists in the Second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II) [J].
Crespo-Leiro, Maria G. ;
Zuckermann, Andreas ;
Bara, Christoph ;
Mohacsi, Paul ;
Schulz, Uwe ;
Boyle, Andrew ;
Ross, Heather J. ;
Parameshwar, Jayan ;
Zakliczynski, Michael ;
Fiocchi, Roberto ;
Stypmann, Joerg ;
Hoefer, Daniel ;
Lehmkuhl, Hans ;
Deng, Mario C. ;
Leprince, Pascal ;
Berry, Gerald ;
Marboe, Charles C. ;
Stewart, Susan ;
Tazelaar, Henry D. ;
Baron, Helen M. ;
Coleman, Ian-Charles ;
Vanhaecke, Johan .
TRANSPLANTATION, 2012, 94 (11) :1172-1177
[18]   Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study [J].
Elmore, Joann G. ;
Barnhill, Raymond L. ;
Elder, David E. ;
Longton, Gary M. ;
Pepe, Margaret S. ;
Reisch, Lisa M. ;
Carney, Patricia A. ;
Titus, Linda J. ;
Nelson, Heidi D. ;
Onega, Tracy ;
Tosteson, Anna N. A. ;
Weinstock, Martin A. ;
Knezevich, Stevan R. ;
Piepkorn, Michael W. .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 357
[19]  
Elmore JG, 2015, JAMA-J AM MED ASSOC, V313, P1122, DOI 10.1001/jama.2015.1405
[20]   Diagnosis of normal and malignant human gastric tissue samples by FTIR spectra combined with mathematical models [J].
Ghassemi, Maryam K. ;
Barzegari, Sahar ;
Hajian, Parastoo ;
Zham, Hanieh ;
Mirzaei, Hamid Reza ;
Shirazi, Farshad H. .
JOURNAL OF MOLECULAR STRUCTURE, 2021, 1229