On the generalized von Karman equations and their approximation

被引:3
|
作者
Ciarlet, Philippe G.
Gratie, Liliana
Kesavan, Srinivasan
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Peoples R China
[2] City Univ Hong Kong, Liu Bie Ju Ctr Math Sci, Kowloon, Peoples R China
[3] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2007年 / 17卷 / 04期
关键词
nonlinear plate theory; Brouwer's theorem; finite element method;
D O I
10.1142/S0218202507002042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here the " generalized von Karman equations", which constitute a mathematical model for a nonlinearly elastic plate subjected to boundary conditions " of von Karman type" only on a portion of its lateral face, the remaining portion being free. As already shown elsewhere, solving these equations amounts to solving a " cubic" operator equation, which generalizes an equation introduced by Berger and Fife. Two noticeable features of this equation, which are not encountered in the " classical" von Karman equations are the lack of strict positivity of its cubic part and the lack of an associated functional. We establish here the convergence of a conforming finite element approximation to these equations. The proof relies in particular on a compactness method due to J. L. Lions and on Brouwer's fixed point theorem. This convergence proof provides in addition an existence proof for the original problem.
引用
收藏
页码:617 / 633
页数:17
相关论文
共 50 条
  • [31] A virtual element method for the von Karman equations
    Lovadina, Carlo
    Mora, David
    Velasquez, Ivan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (02) : 533 - 560
  • [32] APPLICATION OF KIKUCHIS METHOD TO THE VON KARMAN EQUATIONS
    KESAVAN, S
    NUMERISCHE MATHEMATIK, 1979, 32 (02) : 209 - 232
  • [33] Integral bounds for von Karman's equations
    Mareno, Anita
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (06): : 509 - 513
  • [35] Solutions to simplified von Karman plate equations
    Becque, J.
    STABILITY AND DUCTILITY OF STEEL STRUCTURES 2019, 2019, : 173 - 180
  • [36] Asymptotic justification of dynamical equations for generalized Marguerre-von Karman anisotropic shallow shells
    Ghezal, Abderrezak
    Chacha, Djamal Ahmed
    APPLICABLE ANALYSIS, 2017, 96 (05) : 741 - 759
  • [37] ON EXISTENCE OF A SOLUTION OF MODIFIED VON KARMAN EQUATIONS
    PIECHOCK.W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1968, 16 (06): : 511 - &
  • [38] Intrinsic Marguerre-von Karman equations
    Ciarlet, Philippe G.
    Mardare, Cristinel
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (02) : 386 - 400
  • [39] Variational study of bifurcations in von Karman equations
    Jin, Rongrong
    Lu, Guangcun
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (03) : 567 - 590
  • [40] A low-order mixed variational principle for the generalized Marguerre-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    MECCANICA, 2020, 55 (04) : 883 - 890