On the generalized von Karman equations and their approximation

被引:3
|
作者
Ciarlet, Philippe G.
Gratie, Liliana
Kesavan, Srinivasan
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Peoples R China
[2] City Univ Hong Kong, Liu Bie Ju Ctr Math Sci, Kowloon, Peoples R China
[3] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2007年 / 17卷 / 04期
关键词
nonlinear plate theory; Brouwer's theorem; finite element method;
D O I
10.1142/S0218202507002042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here the " generalized von Karman equations", which constitute a mathematical model for a nonlinearly elastic plate subjected to boundary conditions " of von Karman type" only on a portion of its lateral face, the remaining portion being free. As already shown elsewhere, solving these equations amounts to solving a " cubic" operator equation, which generalizes an equation introduced by Berger and Fife. Two noticeable features of this equation, which are not encountered in the " classical" von Karman equations are the lack of strict positivity of its cubic part and the lack of an associated functional. We establish here the convergence of a conforming finite element approximation to these equations. The proof relies in particular on a compactness method due to J. L. Lions and on Brouwer's fixed point theorem. This convergence proof provides in addition an existence proof for the original problem.
引用
收藏
页码:617 / 633
页数:17
相关论文
共 50 条
  • [21] Removable singularities for the Von Karman equations
    DiFiore, Lawrence B.
    Shapiro, Victor L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 550 - 564
  • [23] NUMERICAL APPROXIMATION OF VON KARMAN VISCOELASTIC PLATES
    Friedrich, Manuel
    Kruzik, Martin
    Valdman, Jan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01): : 299 - 319
  • [24] Existence Result for a Dynamical Equations of Generalized Marguerre-von Karman Shallow Shells
    Chacha, D. A.
    Ghezal, A.
    Bensayah, A.
    JOURNAL OF ELASTICITY, 2013, 111 (02) : 265 - 283
  • [25] ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF A DISTRIBUTED OPTIMAL CONTROL PROBLEM GOVERNED BY THE VON KARMAN EQUATIONS
    Mallik, Gouranga
    Nataraj, Neela
    Raymond, Jean-Pierre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 1137 - 1172
  • [26] On the range of applicability of von Karman plate equations
    Zhou, You-He
    Zheng, Xiao-Jing
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (03): : 724 - 726
  • [27] Inertial Manifolds for von Karman Plate Equations
    Applied Mathematics & Optimization, 2002, 46 : 179 - 206
  • [28] Exponential decay for a von Karman equations with memory
    Kang, Jum-Ran
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [29] Symmetry and scaling properties of the von Karman equations
    Chien, CS
    Kuo, YJ
    Mei, Z
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (05): : 710 - 729
  • [30] Inertial manifolds for von Karman plate equations
    Chueshov, I
    Lasiecka, I
    APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 46 (2-3): : 179 - 206