Gradient descent with momentum based neural network pattern classification for the prediction of soil moisture content in precision agriculture

被引:14
作者
Lenka, Saroj Kumar [1 ]
Mohapatra, Ambarish G. [2 ]
机构
[1] Mody Univ Sci & Technol, Dept Informat Technol, Lakshmangarh 332311, Rajasthan, India
[2] Silicon Inst Technol, Dept Appl Elect & Instrumentat, Bhubaneswar 751024, Odisha, India
来源
2015 IEEE International Symposium on Nanoelectronic and Information Systems | 2015年
关键词
Neural Network Pattern classification; Gradient Descent with Momentum; Soil Moisture Content; ALGORITHM;
D O I
10.1109/iNIS.2015.56
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Irrigation in agricultural lands plays a vivacious role in water and soil conservation. Future prediction of soil moisture content using real-time soil and environmental parameters may provide an efficient platform for agriculture land irrigation requirements. In this paper we have proposed one optimization technique like Gradient Descent with Momentum is used to train neural network pattern classification algorithm. The algorithm is tested for the prediction of soil moisture content in each one hour advance by considering eleven different soil and environmental parameters collected during a field test. The prediction errors are analysed using MSE (Mean Square Error), RMSE (Root Mean Square Error), and R-squared error. The performance of the proposed soil moisture content prediction is well documented in this article.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 8 条
[1]  
Andrei N, 2007, COMPUT OPTIM APPL, V38, P401, DOI [10.1007/s10589-007-9055-7, 10.1007/S10589-007-9055-7]
[2]  
[Anonymous], INT C NEUR NETW SAN, DOI DOI 10.1109/ICNN.1993.298623
[3]  
Chel H, 2011, COMM COM INF SC, V204, P196
[4]   A perfect example for the BFGS method [J].
Dai, Yu-Hong .
MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) :501-530
[5]  
Liang RY, 2008, 2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, P2781, DOI 10.1109/ICAL.2008.4636647
[6]  
Mohapatra Ambarish, 2015, INT J CONVE IN PRESS
[7]   ANALYSIS OF A SELF-SCALING QUASI-NEWTON METHOD [J].
NOCEDAL, J ;
YUAN, YX .
MATHEMATICAL PROGRAMMING, 1993, 61 (01) :19-37
[8]  
Rehman MZ, 2011, COMM COM INF SC, V179, P380