CCCFNet: A Content-Boosted Collaborative Filtering Neural Network for Cross Domain Recommender Systems

被引:100
作者
Lian, Jianxun [1 ]
Zhang, Fuzheng [2 ]
Xie, Xing [2 ]
Sun, Guangzhong [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Microsoft Res, Redmond, WA USA
来源
WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB | 2017年
关键词
recommendation system; cross domain; neural network;
D O I
10.1145/3041021.3054207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To overcome data sparsity problem, we propose a cross domain recommendation system named CCCFNet which can combine collaborative filtering and content-based filtering in a unified framework. We first introduce a factorization framework to tie CF and content-based filtering together. Then we find that the MAP estimation of this framework can be embedded into a multi-view neural network. Through this neural network embedding the framework can be further extended by advanced deep learning techniques.
引用
收藏
页码:817 / 818
页数:2
相关论文
共 3 条
[1]   A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems [J].
Elkahky, Ali ;
Song, Yang ;
He, Xiaodong .
PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), 2015, :278-288
[2]  
Pan Weike, 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16-22
[3]  
Singh AP, 2008, P 14 ACM SIGKDD INT, P650, DOI 10.1145/1401890.1401969