Very high oscillator strength in the band-edge light absorption of zincblende, chalcopyrite, kesterite, and hybrid perovskite solar cell materials

被引:17
作者
Kato, Masato [1 ]
Nishiwaki, Mitsutoshi [1 ]
Fujiwara, Hiroyuki [1 ]
机构
[1] Gifu Univ, Dept Elect Elect & Comp Engn, 1-1 Yanagido, Gifu 5011193, Japan
关键词
Density functional theory - Gallium arsenide - II-VI semiconductors - Light absorption - Solar absorbers - III-V semiconductors - Zinc sulfide - Cadmium telluride - Energy gap - Indium phosphide - Semiconducting indium phosphide - Hybrid materials - Perovskite;
D O I
10.1103/PhysRevMaterials.4.035402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In semiconducting solar cell absorbers, high absorption coefficient (a) near the band-edge is critical to maximize the photocurrent generation and collection. Nevertheless, despite the importance of the band-edge absorption characteristics, the quantitative analysis of the band-edge optical transitions has not been performed. In this study, we have implemented systematic density-functional theory calculation, focusing on the band-edge oscillator strength (f) of eight practical solar cell absorbers (GaAs, InP, CdTe, CuInSe2, CuGaSe2, Cu2ZnSnSe4, Cu2ZnSnS4, and CH3 NH3 PbI3) with zincblende, chalcopyrite, kesterite, and hybrid perovskite structures. We find that all the crystals exhibit very high f in the band-gap (E-g) region, compared with f in the higher-energy region, revealing the fact that a in the E-g region is enhanced significantly by the high f . We have further established that the magnitude of f can be interpreted from the charge distributions involved in the optical transition. In contrast to general understanding that the band-edge light absorption is derived from the joint density of state, our result reveals the critical role of f in the determination of absolute a values near E-g in quite general solar cell materials.
引用
收藏
页数:13
相关论文
共 39 条
[11]   Solar cell efficiency tables (Version 53) [J].
Green, Martin A. ;
Hishikawa, Yoshihiro ;
Dunlop, Ewan D. ;
Levi, Dean H. ;
Hohl-Ebinger, Jochen ;
Yoshita, Masahiro ;
Ho-Baillie, Anita W. Y. .
PROGRESS IN PHOTOVOLTAICS, 2019, 27 (01) :3-12
[12]   Quantitative Assessment of Optical Gain and Loss in Submicron-Textured CuIn1-xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation [J].
Hara, Takuya ;
Maekawa, Takuji ;
Minoura, Shota ;
Sago, Yuichiro ;
Niki, Shigeru ;
Fujiwara, Hiroyuki .
PHYSICAL REVIEW APPLIED, 2014, 2 (03)
[13]   Hybrid functionals based on a screened Coulomb potential [J].
Heyd, J ;
Scuseria, GE ;
Ernzerhof, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18) :8207-8215
[14]   Dielectric functions of Cu2ZnSnSe4 and Cu2SnSe3 semiconductors [J].
Hirate, Yoshiki ;
Tampo, Hitoshi ;
Minoura, Shota ;
Kadowaki, Hideyuki ;
Nakane, Akihiro ;
Kim, Kang Min ;
Shibata, Hajime ;
Niki, Shigeru ;
Fujiwara, Hiroyuki .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (01)
[15]   THEORY OF THE BAND-GAP ANOMALY IN ABC2 CHALCOPYRITE SEMICONDUCTORS [J].
JAFFE, JE ;
ZUNGER, A .
PHYSICAL REVIEW B, 1984, 29 (04) :1882-1906
[16]   Momentum-matrix-element calculation using pseudopotentials [J].
Kageshima, H ;
Shiraishi, K .
PHYSICAL REVIEW B, 1997, 56 (23) :14985-14992
[17]   Universal rules for visible-light absorption in hybrid perovskite materials [J].
Kato, Masato ;
Fujiseki, Takemasa ;
Miyadera, Tetsuhiko ;
Sugita, Takeshi ;
Fujimoto, Shohei ;
Tamakoshi, Masato ;
Chikamatsu, Masayuki ;
Fujiwara, Hiroyuki .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)
[18]   Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status [J].
Kato, Takuya .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (04)
[19]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[20]   Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length [J].
Lee, Yun Seog ;
Gershon, Talia ;
Gunawan, Oki ;
Todorov, Teodor K. ;
Gokmen, Tayfun ;
Virgus, Yudistira ;
Guha, Supratik .
ADVANCED ENERGY MATERIALS, 2015, 5 (07)