Spatial Predictions and Associated Uncertainty of Annual Soil Respiration at the Global Scale

被引:86
作者
Warner, D. L. [1 ]
Bond-Lamberty, B. [2 ]
Jian, J. [2 ]
Stell, E. [3 ]
Vargas, R. [4 ]
机构
[1] Univ Delaware, Delaware Geol Survey, Newark, DE 19716 USA
[2] Pacific Northwest Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA
[3] Univ Delaware, Dept Geog, Newark, DE USA
[4] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19717 USA
基金
美国国家航空航天局;
关键词
Machine learning; soil respiration; soil CO2 efflux; global; carbon cycle; CARBON-DIOXIDE; HETEROTROPHIC RESPIRATION; SEMIARID ECOSYSTEMS; WATER CONTENT; CO2; EFFLUX; CLIMATE; FOREST; TEMPERATURE; VEGETATION; PATTERNS;
D O I
10.1029/2019GB006264
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil respiration (Rs), the soil-to-atmosphere CO2 flux produced by microbes and plant roots, is a critical but uncertain component of the global carbon cycle. Our current understanding of the variability and dynamics is limited by the coarse spatial resolution of existing estimates. We predicted annual Rs and associated uncertainty across the world at 1-km resolution using a quantile regression forest algorithm trained with observations from the global Soil Respiration Database spanning from 1961 to 2011. This model yielded a global annual Rs estimate of 87.9 Pg C/year with an associated global uncertainty of 18.6 (mean absolute error) and 40.4 (root mean square error) Pg C/year. The estimated annual heterotrophic respiration (Rh), derived from empirical relationships with Rs, was 49.7 Pg C/year over the same period. Predicted Rs rates and associated uncertainty varied widely across vegetation types, with the greatest predicted rates of Rs in evergreen broadleaf forests (accounting for 20.9% of global Rs). The greatest prediction uncertainties were in northern latitudes and arid to semiarid ecosystems, suggesting that these areas should be targeted in future measurement campaigns. This study provides predictions of Rs (and associated prediction uncertainty) at unprecedentedly high spatial resolution across the globe that could help constrain local-to-global process-based models. Furthermore, it provides insights into the large variability of Rs and Rh across vegetation classes and identifies regions and vegetation types with poor model performance that should be prioritized for future data collection.
引用
收藏
页码:1733 / 1745
页数:13
相关论文
共 68 条
  • [61] Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms
    Tramontana, Gianluca
    Jung, Martin
    Schwalm, Christopher R.
    Ichii, Kazuhito
    Camps-Valls, Gustau
    Raduly, Botond
    Reichstein, Markus
    Arain, M. Altaf
    Cescatti, Alessandro
    Kiely, Gerard
    Merbold, Lutz
    Serrano-Ortiz, Penelope
    Sickert, Sven
    Wolf, Sebastian
    Papale, Dario
    [J]. BIOGEOSCIENCES, 2016, 13 (14) : 4291 - 4313
  • [62] Hot-Moments of Soil CO2 Efflux in a Water-Limited Grassland
    Vargas, Rodrigo
    Sanchez-Canete P, Enrique
    Serrano-Ortiz, Penelope
    Curiel Yuste, Jorge
    Domingo, Francisco
    Lopez-Ballesteros, Ana
    Oyonarte, Cecilio
    [J]. SOIL SYSTEMS, 2018, 2 (03) : 1 - 18
  • [63] How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest
    Vargas, Rodrigo
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (03):
  • [64] Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux
    Vargas, Rodrigo
    Baldocchi, Dennis D.
    Allen, Michael F.
    Bahn, Michael
    Black, T. Andrew
    Collins, Scott L.
    Yuste, Jorge Curiel
    Hirano, Takashi
    Jassal, Rachhpal S.
    Pumpanen, Jukka
    Tang, Jianwu
    [J]. ECOLOGICAL APPLICATIONS, 2010, 20 (06) : 1569 - 1582
  • [65] Upscaling soil-atmosphere CO2 and CH4 fluxes across a topographically complex forested landscape
    Warner, Daniel L.
    Guevara, Mario
    Inamdar, Shreeram
    Vargas, Rodrigo
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2019, 264 : 80 - 91
  • [66] Global Patterns and Predictions of Seafloor Biomass Using Random Forests
    Wei, Chih-Lin
    Rowe, Gilbert T.
    Escobar-Briones, Elva
    Boetius, Antje
    Soltwedel, Thomas
    Caley, M. Julian
    Soliman, Yousria
    Huettmann, Falk
    Qu, Fangyuan
    Yu, Zishan
    Pitcher, C. Roland
    Haedrich, Richard L.
    Wicksten, Mary K.
    Rex, Michael A.
    Baguley, Jeffrey G.
    Sharma, Jyotsna
    Danovaro, Roberto
    MacDonald, Ian R.
    Nunnally, Clifton C.
    Deming, Jody W.
    Montagna, Paul
    Levesque, Melanie
    Weslawski, Jan Marcin
    Wlodarska-Kowalczuk, Maria
    Ingole, Baban S.
    Bett, Brian J.
    Billett, David S. M.
    Yool, Andrew
    Bluhm, Bodil A.
    Iken, Katrin
    Narayanaswamy, Bhavani E.
    [J]. PLOS ONE, 2010, 5 (12):
  • [67] The role of satellite remote sensing in climate change studies (vol 3, pg 875, 2013)
    Yang, Jun
    Gong, Peng
    Fu, Rong
    Zhang, Minghua
    Chen, Jingming
    Liang, Shunlin
    Xu, Bing
    Shi, Jiancheng
    Dickinson, Robert
    [J]. NATURE CLIMATE CHANGE, 2013, 3 (11) : 1002 - 1002
  • [68] Model prediction of biome-specific global soil respiration from 1960 to 2012
    Zhao, Zhengyong
    Peng, Changhui
    Yang, Qi
    Meng, Fan-Rui
    Song, Xinzhang
    Chen, Shutao
    Epule, Terence Epule
    Li, Peng
    Zhu, Qiuan
    [J]. EARTHS FUTURE, 2017, 5 (07) : 715 - 729