Hardware-efficient variational quantum algorithms for time evolution

被引:126
作者
Benedetti, Marcello [1 ]
Fiorentini, Mattia [1 ]
Lubasch, Michael [1 ]
机构
[1] Cambridge Quantum Comp Ltd, London SW1E 6DR, England
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
关键词
MATRIX PRODUCT STATES; SYSTEMS;
D O I
10.1103/PhysRevResearch.3.033083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parameterized quantum circuits are a promising technology for achieving a quantum advantage. An important application is the variational simulation of time evolution of quantum systems. To make the most of quantum hardware, variational algorithms need to be as hardware-efficient as possible. Here we present alternatives to the time-dependent variational principle that are hardware-efficient and do not require matrix inversion. In relation to imaginary time evolution, our approach significantly reduces the hardware requirements. With regards to real time evolution, where high precision can be important, we present algorithms of systematically increasing accuracy and hardware requirements. We numerically analyze the performance of our algorithms using quantum Hamiltonians with local interactions.
引用
收藏
页数:15
相关论文
共 43 条
[31]   Projective quantum eigensolver via adiabatically decoupled subsystem evolution: A resource efficient approach to molecular energetics in noisy quantum computers [J].
Patra, Chayan ;
Halder, Sonaldeep ;
Maitra, Rahul .
JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (21)
[32]   Time evolution of initial states that extend beyond the potential interaction region in quantum decay [J].
Garcia-Calderon, Gaston ;
Villavicencio, Jorge ;
Hernandez-Maldonado, Alberto ;
Romo, Roberto .
PHYSICAL REVIEW A, 2016, 94 (02)
[33]   Efficient continuous-time quantum Monte Carlo algorithm for fermionic lattice models [J].
Iazzi, Mauro ;
Troyer, Matthias .
PHYSICAL REVIEW B, 2015, 91 (24)
[34]   Efficient explicit time integration algorithms for non-spherical granular dynamics on group S(3) [J].
Li, Zonglin ;
Chen, Ju ;
Tian, Qiang ;
Hu, Haiyan .
COMPUTATIONAL PARTICLE MECHANICS, 2025, 12 (01) :81-106
[35]   Exhaustive search for optimal molecular geometries using imaginary-time evolution on a quantum computer [J].
Kosugi, Taichi ;
Nishi, Hirofumi ;
Matsushita, Yu-ichiro .
NPJ QUANTUM INFORMATION, 2023, 9 (01)
[36]   Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution [J].
Gangat, Adil A. ;
Te, I ;
Kao, Ying-Jer .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[37]   Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions [J].
Wang, Lei ;
Iazzi, Mauro ;
Corboz, Philippe ;
Troyer, Matthias .
PHYSICAL REVIEW B, 2015, 91 (23)
[38]   Nonequilibrium quantum phase transitions in the XY model: comparison of unitary time evolution and reduced density operator approaches [J].
Ajisaka, Shigeru ;
Barra, Felipe ;
Zunkovic, Bojan .
NEW JOURNAL OF PHYSICS, 2014, 16
[39]   Exact analytical non-Hermitian formulation of the time evolution of decay of one and two identical quantum particles [J].
Garcia-Calderon, Gaston .
7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
[40]   Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains [J].
Zauner, V. ;
Ganahl, M. ;
Evertz, H. G. ;
Nishino, T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (42)