GPU-Accelerated Simulation of Elastic Wave Propagation

被引:0
|
作者
Kadlubiak, Kristian [1 ]
Jaros, Jiri [1 ]
Treeby, Bredly E. [2 ]
机构
[1] Brno Univ Technol, Fac Informat Technol, Ctr Excellence IT4Innovat, Brno, Czech Republic
[2] UCL, Dept Med Phys & Biomed Engn, London, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Ultrasound simulations; Elastic model; Pseudospectral methods; k-Wave; CUDA; GPU; INTENSITY FOCUSED ULTRASOUND;
D O I
10.1109/HPCS.2018.00044
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Modeling of ultrasound waves propagation in hard biological materials such as bones and skull has a rapidly growing area of applications, e.g. brain cancer treatment planing, deep brain neurostimulation and neuromodulation, and opening blood brain barriers. Recently, we have developed a novel numerical model of elastic wave propagation based on the Kelvin-Voigt model accounting for linear elastic wave proration in heterogeneous absorption media. Although, the model offers unprecedented fidelity, its computational requirements have been prohibitive for realistic simulations. This paper presents an optimized version of the simulation model accelerated by the Nvidia CUDA language and deployed on the best GPUs including the Nvidia P100 accelerators present in the Piz Daint supercomputer. The native CUDA code reaches a speed-up of 5.4 when compared to the Matlab prototype accelerated by the Parallel Computing Toolbox running on the same GPU. Such reduction in computation time enables computation of large-scale treatment plans in terms of hours.
引用
收藏
页码:188 / 195
页数:8
相关论文
共 50 条
  • [31] GPU-Accelerated Field Simulation of HVAC Gas Insulated Lines
    Hensel, Hendrik
    Henkel, Marvin-Lucas
    Haussmann, Norman
    Joergens, Christoph
    Stroka, Steven
    Clemens, Markus
    2022 IEEE 20TH BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION-LONG PAPERS, CEFC-LONG, 2022,
  • [32] GPU-Accelerated Feature Tracking
    Graves, Alexander
    PROCEEDINGS OF THE 2016 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON) AND OHIO INNOVATION SUMMIT (OIS), 2016, : 422 - 429
  • [33] GPU-accelerated Montgomery exponentiation
    Fleissner, Sebastian
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 213 - 220
  • [34] GPU-accelerated compressive holography
    Endo, Yutaka
    Shimobaba, Tomoyoshi
    Kakue, Takashi
    Tomoyoshi
    OPTICS EXPRESS, 2016, 24 (08): : 8437 - 8445
  • [35] GPU-accelerated Path Rendering
    Kilgard, Mark J.
    Bolz, Jeff
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (06):
  • [36] GPU-Accelerated Charge Mapping
    Sanaullah, Ahmed
    Mojumder, Saiful A.
    Lewis, Kathleen M.
    Herbordt, Martin C.
    2016 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2016,
  • [37] GPU-accelerated artificial neural network potential for molecular dynamics simulation
    Zhang, Meng
    Hibi, Koki
    Inoue, Junya
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 285
  • [38] A GPU-ACCELERATED MULTIPHASE COMPUTATIONAL TOOL FOR ASTEROID FRAGMENTATION/PULVERIZATION SIMULATION
    Zimmerman, Ben J.
    Wie, Bong
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 3575 - 3591
  • [39] GPU-Accelerated Sparse LU Factorization for Circuit Simulation with Performance Modeling
    Chen, Xiaoming
    Ren, Ling
    Wang, Yu
    Yang, Huazhong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (03) : 786 - 795
  • [40] Method for scalable and performant GPU-accelerated simulation of multiphase compressible flow
    Radhakrishnan, Anand
    Le Berre, Henry
    Wilfong, Benjamin
    Spratt, Jean-Sebastien
    Rodriguez Jr, Mauro
    Colonius, Tim
    Bryngelson, Spencer H.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 302