Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation

被引:78
作者
Li, Juan
Xu, Tao
Meng, Xiang-Hua
Zhang, Ya-Xing
Zhang, Hai-Qiang
Tian, Bo
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Opt Commun & Lightware Technol, Beijing 100876, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
soliton solutions; integrable properties; Gardner equation; symbolic computation;
D O I
10.1016/j.jmaa.2007.03.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a generalized variable-coefficient Gardner equation arising in nonlinear lattice, plasma physics and ocean dynamics is investigated. With symbolic computation, the Lax pair and Backlund transformation are explicitly obtained when the coefficient functions obey the Painleve-integrable conditions. Meanwhile, under the constraint conditions, two transformations from such an equation either to the constant-coefficient Gardner or modified Korteweg-de Vries (mKdV) equation are proposed. Via the two transformations, the investigations on the variable-coefficient Gardner equation can be based on the constant-coefficient ones. The N-soliton-like solution is presented and discussed through the figures for some sample solutions. It is shown in the discussions that the variable-coefficient Gardner equation possesses the right- and left-travelling soliton-like waves, which involve abundant temporally-inhomogeneous features. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1443 / 1455
页数:13
相关论文
共 71 条
[1]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[2]   Interactions of breathers and solitons in the extended Korteweg-de Vries equation [J].
Chow, KW ;
Grimshaw, RHJ ;
Ding, E .
WAVE MOTION, 2005, 43 (02) :158-166
[3]   Solution of the pulse width modulation problem using orthogonal polynomials and Korteweg-de Vries equations [J].
Chudnovsky, DV ;
Chudnovsky, GV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12263-12268
[4]   PAINLEVE ANALYSIS AND THE COMPLETE-INTEGRABILITY OF A GENERALIZED VARIABLE-COEFFICIENT KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (01) :27-53
[5]   Response to "Comment on 'A new mathematical approach for finding the solitary waves in dusty plasma'" [Phys. Plasmas 6, 4392 (1999)] [J].
Das, GC ;
Sarma, J .
PHYSICS OF PLASMAS, 1999, 6 (11) :4394-4397
[6]  
DJORDJEVIC VD, 1978, J PHYS OCEANOGR, V8, P1016, DOI 10.1175/1520-0485(1978)008<1016:TFADOI>2.0.CO
[7]  
2
[8]   On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves [J].
Dye, JM ;
Parker, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) :2567-2589
[9]   New kinds of solutions to Gardner equation [J].
Fu, ZT ;
Liu, SD ;
Liu, SK .
CHAOS SOLITONS & FRACTALS, 2004, 20 (02) :301-309
[10]   (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation [J].
Gao, Yi-Tian ;
Tian, Bo .
PHYSICS OF PLASMAS, 2006, 13 (12)