Gauge-independent "Abelian" and magnetic-monopole dominance, and the dual Meissner effect in lattice SU(2) Yang-Mills theory

被引:10
|
作者
Kato, Seikou [1 ]
Kondo, Kei-Ichi [2 ]
Shibata, Akihiro [3 ,4 ]
机构
[1] Fukui Natl Coll Technol, Sabae 9168507, Japan
[2] Chiba Univ, Grad Sch Sci, Dept Phys, Chiba 2638522, Japan
[3] High Energy Accelerator Res Org KEK, Comp Res Ctr, Tsukuba, Ibaraki 3050801, Japan
[4] Grad Univ Adv Studies Sokendai, Tsukuba, Ibaraki 3050801, Japan
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 03期
基金
日本学术振兴会;
关键词
FADDEEV-NIEMI DECOMPOSITION; STRING TENSION; QUARK CONFINEMENT; FORMULATION; VARIABLES; TOPOLOGY;
D O I
10.1103/PhysRevD.91.034506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the SU(2) Yang-Mills theory on the four-dimensional Euclidean lattice, we confirm the gauge-independent "Abelian" dominance (or the restricted field dominance) and gauge-independent magnetic-monopole dominance in the string tension of the linear potential extracted from the Wilson loop in the fundamental representation. The dual Meissner effect is observed by demonstrating the squeezing of the chromoelectric field flux connecting a pair of a quark and an antiquark. In addition, the circular magnetic-monopole current is induced around the chromoelectric flux. The type of the dual superconductivity is also determined by fitting the result with the dual Ginzburg-Landau model. Thus, the dual superconductor picture for quark confinement is supported in a gauge-independent manner. These results are obtained based on a reformulation of the lattice Yang-Mills theory based on the change of variables a la Cho-Duan-Ge-Faddeev-Niemi combined with a non-Abelian Stokes theorem for the Wilson loop operator. We give a new procedure (called the reduction) for obtaining the color direction field that plays the central role in this reformulation.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Aspects of electric and magnetic variables in SU(2) Yang-Mills theory
    Faddeev, L
    Niemi, AJ
    PHYSICS LETTERS B, 2002, 525 (1-2) : 195 - 200
  • [42] 4-DIMENSIONAL SU(2) YANG-MILLS THEORY ON A PSEUDORANDOM LATTICE
    COLANGELO, P
    COSMAI, L
    SCRIMIERI, E
    PHYSICAL REVIEW D, 1988, 37 (04): : 1090 - 1093
  • [43] Glueball scattering cross section in lattice SU(2) Yang-Mills theory
    Yamanaka, Nodoka
    Iida, Hideaki
    Nakamura, Atsushi
    Wakayama, Masayuki
    PHYSICAL REVIEW D, 2020, 102 (05)
  • [44] Quark-confinement mechanism for SU(2) Yang–Mills theory in abelian gauge
    Kou Su-Peng
    The European Physical Journal C - Particles and Fields, 2001, 19 : 113 - 127
  • [45] Gauge-covariant decomposition and magnetic monopole for G(2) Yang-Mills field
    Matsudo, Ryutaro
    Kondo, Kei-Ichi
    PHYSICAL REVIEW D, 2016, 94 (04)
  • [46] Gauge-independent Brout-Englert-Higgs mechanism and Yang-Mills theory with a gauge-invariant gluon mass term
    Kondo, Kei-Ichi
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07):
  • [48] U(1) lattice gauge theory and N=2 supersymmetric Yang-Mills theory
    Ambjorn, J
    Sasakura, N
    Espriu, D
    MODERN PHYSICS LETTERS A, 1997, 12 (35) : 2665 - 2681
  • [49] U(1) lattice gauge theory and N = 2 supersymmetric Yang-Mills theory
    Ambjorn, J
    Espriu, D
    Sasakura, N
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1999, 47 (1-3): : 287 - 292
  • [50] U(1) lattice gauge theory and N=2 supersymmetric Yang-Mills theory
    Ambjorn, J
    Espriu, D
    Sasakura, N
    THEORY OF ELEMENTARY PARTICLES, 1998, : 247 - 252