Learning Data Augmentation with Online Bilevel Optimization for Image Classification

被引:14
|
作者
Mounsaveng, Saypraseuth [1 ]
Laradji, Issam [2 ]
Ben Ayed, Ismail [1 ]
Vazquez, David [2 ]
Pedersoli, Marco [1 ]
机构
[1] ETS Montreal, Montreal, PQ, Canada
[2] Element AI, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NEURAL-NETWORKS;
D O I
10.1109/WACV48630.2021.00173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is a key practice in machine learning for improving generalization performance. However, finding the best data augmentation hype rparameters requires domain knowledge or a computationally demanding search. We address this issue by proposing an efficient approach to automatically train a network that learns an effective distribution of transformations to improve its generalization. Using bilevel optimization, we directly optimize the data augmentation parameters using a validation set. This framework can be used as a general solution to learn the optimal data augmentation jointly with an end task model like a classifier. Results show that our joint training method produces an image classification accuracy that is comparable to or better than carefully hand-crafted data augmentation. Yet, it does not need an expensive external validation loop on the data augmentation hyperparaineters.
引用
收藏
页码:1690 / 1699
页数:10
相关论文
共 50 条
  • [41] Improving Image Classification Robustness Using Predictive Data Augmentation
    Harisubramanyabalaji, Subramani Palanisamy
    Rehman, Shafiq Ur
    Nyberg, Mattias
    Gustavsson, Joakim
    COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2018, 2018, 11094 : 548 - 561
  • [42] A Novel Method for Myocardial Image Classification using Data Augmentation
    Zhu, Qing Kun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 893 - 901
  • [43] Leveraging GANs data augmentation for imbalanced medical image classification
    Ding, Hongwei
    Huang, Nana
    Cui, Xiaohui
    APPLIED SOFT COMPUTING, 2024, 165
  • [44] Superpixelwise PCA based data augmentation for hyperspectral image classification
    Gao, Shang
    Jiang, Xinwei
    Zhang, Yongshan
    Liu, Xiaobo
    Xiong, Qianjin
    Cai, Zhihua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 81209 - 81229
  • [45] Data Augmentation via Latent Space Interpolation for Image Classification
    Liu, Xiaofeng
    Zou, Yang
    Kong, Lingsheng
    Diao, Zhihui
    Yan, Junliang
    Wang, Jun
    Li, Site
    Jia, Ping
    You, Jane
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 728 - 733
  • [46] Deep Learning with Data Augmentation to Add Data Around Classification Boundaries
    Fujinami, Hideki
    Kumoi, Gendo
    Goto, Masayuki
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2021, 20 (03): : 384 - 397
  • [47] Data Augmentation On-the-fly and Active Learning in Data Stream Classification
    Malialisa, Kleanthis
    Papatheodoulou, Dimitris
    Filippou, Stylianos
    Panayiotou, Christos G.
    Polycarpou, Marios M.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1408 - 1414
  • [48] A Submodular Optimization Framework for Imbalanced Text Classification With Data Augmentation
    Alemayehu, Eyor
    Fang, Yi
    IEEE ACCESS, 2023, 11 : 41680 - 41696
  • [49] Contextual Online Dictionary Learning for Hyperspectral Image Classification
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1336 - 1347
  • [50] Hyperspectral Image Classification With Online Structured Dictionary Learning
    Azar, Saeideh Ghanbari
    Meshgini, Saeed
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 276 - 281