Learning Data Augmentation with Online Bilevel Optimization for Image Classification

被引:14
|
作者
Mounsaveng, Saypraseuth [1 ]
Laradji, Issam [2 ]
Ben Ayed, Ismail [1 ]
Vazquez, David [2 ]
Pedersoli, Marco [1 ]
机构
[1] ETS Montreal, Montreal, PQ, Canada
[2] Element AI, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NEURAL-NETWORKS;
D O I
10.1109/WACV48630.2021.00173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is a key practice in machine learning for improving generalization performance. However, finding the best data augmentation hype rparameters requires domain knowledge or a computationally demanding search. We address this issue by proposing an efficient approach to automatically train a network that learns an effective distribution of transformations to improve its generalization. Using bilevel optimization, we directly optimize the data augmentation parameters using a validation set. This framework can be used as a general solution to learn the optimal data augmentation jointly with an end task model like a classifier. Results show that our joint training method produces an image classification accuracy that is comparable to or better than carefully hand-crafted data augmentation. Yet, it does not need an expensive external validation loop on the data augmentation hyperparaineters.
引用
收藏
页码:1690 / 1699
页数:10
相关论文
共 50 条
  • [31] Deep learning based data augmentation for large-scale mineral image recognition and classification
    Liu, Yang
    Wang, Xueyi
    Zhang, Zelin
    Deng, Fang
    MINERALS ENGINEERING, 2023, 204
  • [32] Enhancement of Image Classification Using Transfer Learning and GAN-Based Synthetic Data Augmentation
    Chatterjee, Subhajit
    Hazra, Debapriya
    Byun, Yung-Cheol
    Kim, Yong-Woon
    MATHEMATICS, 2022, 10 (09)
  • [33] A survey of automated data augmentation algorithms for deep learning-based image classification tasks
    Yang, Zihan
    Sinnott, Richard O.
    Bailey, James
    Ke, Qiuhong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (07) : 2805 - 2861
  • [34] Bilevel optimization and machine learning
    Bennett, Kristin P.
    Kunapuli, Gautam
    Hu, Jing
    Pang, Jong-Shi
    COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 25 - +
  • [35] Meta generative image and text data augmentation optimization
    Zhang, Enzhi
    Dong, Bochen
    Wahib, Mohamed
    Zhong, Rui
    Munetomo, Masaharu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 12644 - 12662
  • [36] A New Accelerated Algorithm for Convex Bilevel Optimization Problems and Applications in Data Classification
    Thongpaen, Panadda
    Inthakon, Warunun
    Leerapun, Taninnit
    Suantai, Suthep
    SYMMETRY-BASEL, 2022, 14 (12):
  • [37] Effect of Data Augmentation Methods on Face Image Classification Results
    Hrga, Ingrid
    Ivasic-Kos, Marina
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 660 - 667
  • [38] Class-Conditional Data Augmentation Applied to Image Classification
    Aguilar, Eduardo
    Radeva, Petia
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II, 2019, 11679 : 182 - 192
  • [39] Enhancing Endoscopic Image Classification with Symptom Localization and Data Augmentation
    Trung-Hieu Hoang
    Hai-Dang Nguyen
    Viet-Anh Nguyen
    Thanh-An Nguyen
    Vinh-Tiep Nguyen
    Minh-Triet Tran
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2578 - 2582
  • [40] Hyperspectral Image Classification Using Random Occlusion Data Augmentation
    Haut, Juan Mario
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    Li, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) : 1751 - 1755