Learning Data Augmentation with Online Bilevel Optimization for Image Classification

被引:14
|
作者
Mounsaveng, Saypraseuth [1 ]
Laradji, Issam [2 ]
Ben Ayed, Ismail [1 ]
Vazquez, David [2 ]
Pedersoli, Marco [1 ]
机构
[1] ETS Montreal, Montreal, PQ, Canada
[2] Element AI, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NEURAL-NETWORKS;
D O I
10.1109/WACV48630.2021.00173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is a key practice in machine learning for improving generalization performance. However, finding the best data augmentation hype rparameters requires domain knowledge or a computationally demanding search. We address this issue by proposing an efficient approach to automatically train a network that learns an effective distribution of transformations to improve its generalization. Using bilevel optimization, we directly optimize the data augmentation parameters using a validation set. This framework can be used as a general solution to learn the optimal data augmentation jointly with an end task model like a classifier. Results show that our joint training method produces an image classification accuracy that is comparable to or better than carefully hand-crafted data augmentation. Yet, it does not need an expensive external validation loop on the data augmentation hyperparaineters.
引用
收藏
页码:1690 / 1699
页数:10
相关论文
共 50 条
  • [21] Hyperspectral Image Classification With Data Augmentation and Classifier Fusion
    Wang, Cong
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1420 - 1424
  • [22] Class-Adaptive Data Augmentation for Image Classification
    Yoo, Jisu
    Kang, Seokho
    IEEE ACCESS, 2023, 11 : 26393 - 26402
  • [23] Data Augmentation for Hyperspectral Image Classification With Deep CNN
    Li, Wei
    Chen, Chen
    Zhang, Mengmeng
    Li, Hengchao
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 593 - 597
  • [24] Data augmentation and shadow image classification for shadow detection
    Li, Guoquan
    Wen, Lingyun
    Huang, Zhengwen
    Xia, Ruiyang
    Pang, Yu
    IET IMAGE PROCESSING, 2022, 16 (03) : 717 - 728
  • [25] Explanation-based Data Augmentation for Image Classification
    Wickramanayake, Sandareka
    Lee, Mong Li
    Hsu, Wynne
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] Advanced Random Mix Augmentation: Data Augmentation Method for Improving Performance of Image Classification in Deep Learning Using Unduplicated Image Processing Combinations
    Im J.
    Louhi Kasahara J.Y.
    Maruyama H.
    Asama H.
    Yamashita A.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (01): : 105 - 112
  • [27] Multi-task few-shot learning with composed data augmentation for image classification
    Zhang, Rui
    Yang, Yixin
    Li, Yang
    Wang, Jiabao
    Li, Hang
    Miao, Zhuang
    IET COMPUTER VISION, 2023, 17 (02) : 211 - 221
  • [28] Tuning of data augmentation hyperparameters in deep learning to building construction image classification with small datasets
    Ottoni, Andre Luiz C.
    de Amorim, Raphael M.
    Novo, Marcela S.
    Costa, Dayana B.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (01) : 171 - 186
  • [29] A survey of automated data augmentation algorithms for deep learning-based image classification tasks
    Zihan Yang
    Richard O. Sinnott
    James Bailey
    Qiuhong Ke
    Knowledge and Information Systems, 2023, 65 : 2805 - 2861
  • [30] Tuning of data augmentation hyperparameters in deep learning to building construction image classification with small datasets
    André Luiz C. Ottoni
    Raphael M. de Amorim
    Marcela S. Novo
    Dayana B. Costa
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 171 - 186